练习7-可视化
探索泰坦尼克灾难数据
步骤1 导入必要的库
运行以下代码
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
%matplotlib inline
步骤2 从以下地址导入数据
运行以下代码
# 本地对应的"train.csv"路径
path7 = 'D:/hailong/hailong_download/pandas_exercise/exercise_data/train.csv'
步骤3 将数据框命名为titanic
运行以下代码
titanic = pd.read_csv(path7)
titanic.head()
步骤4 将PassengerId设置为索引
运行以下代码
titanic.set_index('PassengerId').head()
步骤5 绘制一个展示男女乘客比例的扇形图
运行以下代码
# sum the instances of males and females
males = (titanic['Sex'] == 'male').sum()
females = (titanic['Sex'] == 'female').sum()
# put them into a list called proportions
proportions = [males,females]
# Create a pie chart
plt.pie(
# using proportions
proportions,
# with the labels being officer names
labels = ['Males','Females'],
# with no shadows
shadow = False,
# with colors
colors = ['blue','red'],
# with one slide exploded out
explode = (0.15,0),
# with the start angle at 90%
startangle = 90,
# with the percent listed as a fraction
autopct = '%1.1f%%'
)
# View the plot drop above
plt.axis('equal')
# Set labels
plt.title("Sex Proportion")
# View the plot
plt.tight_layout()
plt.show()
注意撸代码的时候尽量不要写错
步骤6 绘制一个展示船票Fare, 与乘客年龄和性别的散点图
运行以下代码
# creates the plot using
lm = sns.lmplot(x = 'Age', y = 'Fare', data = titanic, hue = 'Sex', fit_reg = False)
# set title
lm.set(title = 'Fare x Age')
# get the axes object and tweak it
axes = lm.axes
axes[0,0].set_ylim(-5,)
axes[0,0].set_ylim(-5,85)
步骤7 有多少人生还?
运行以下代码
titanic.Survived.sum()
输出结果:342
步骤8 绘制一个展示船票价格的直方图
运行以下代码
# sort the values from the top to the least value and slice the first 5 items
df = titanic.Fare.sort_values(ascending = False)
df
# create bins interval using numpy
binsVal = np.arange(0,600,10)
binsVal
# create the plot
plt.hist(df,bins = binsVal)
# Set the title and labels
plt.xlabel('Fare')
plt.ylabel('Frequency')
plt.title('Fare Payed Histrogram')
# show the plot
plt.show()