一致性哈希算法在分布式缓存中的应用

目的


1.介绍一致性hash算法(Consistent Hashing)及其在分布式缓存中的应用,以及对一致性hash算法原理的介绍。
2.福利彩蛋

应用场景


假设我们有一个网站,最近发现随着流量增加,服务器压力越来越大,之前直接读写数据库的方式不太给力了,于是我们想引入Redis作为缓存机制。现在我们一共有三台机器可以作为Redis服务器,如下图所示。


分布式缓存示意图.png

要解决的问题


一般来说我们在大规模访问,大并发流量下都会使用到分布式缓存,即将廉价机器部署在同一个子网内,形成多机器集群,然后通过负载均衡以及一定的路由规则进行读请求的分流,将请求映射到
对应的缓存服务器上。如何对请求与缓存服务器之间进行精准映射,以及优雅的扩展,剔除缓存服务器是分布式缓存部署的痛点。
接下来我们会对解决以上问题的一些传统做法进行分析。

1.请求与缓存服务器之间精准映射问题.

  • 最简策略-随机选取:
    含义:将每一次Redis请求随机发送到一台Redis服务器.
    产生的问题:
   1.同一份数据可能被存在不同的机器上而造成数据冗余。
   2.有可能某数据已经被缓存但是访问却没有命中,因为无法保证对相同key的所有访问都被发送到相同的服务器。
     因此,随机策略无论是时间效率还是空间效率都非常不好。
  • 解决保证相同key每次访问同一台Redis服务器-计算哈希:
    含义:保证对相同key的访问会被发送到相同的服务器。
    方案描述:
    对于每次访问,可以按如下算法计算其哈希值:
    h = Hash(key) % 3
    其中Hash是一个从字符串到正整数的哈希映射函数。这样,如果我们将Redis Server分别编号为0、1、2,那么就可以根据上式和key计算出服务器编号h,然后去访问。
    这个方法虽然解决了上面提到的两个问题,但是存在一些其它的问题。如果将上述方法抽象,可以认为通过:
    h = Hash(key) % N
    这个算式计算每个key的请求应该被发送到哪台服务器,其中N为服务器的台数,并且服务器按照0 – (N-1)编号。

2.优雅的扩展,剔除缓存服务器问题
对于根据请求的key进行hash 运算定位Redis缓存服务器产生的问题: 容错性和扩展性将会变得极差.

  • 容错性:指当系统中某一个或几个服务器变得不可用时,整个系统是否可以正确高效运行;
  • 扩展性:指当加入新的服务器后,整个系统是否可以正确高效运行。
    现假设有一台服务器宕机了,那么为了填补空缺,要将宕机的服务器从编号列表中移除,后面的服务器按顺序前移一位并将其编号
    值减一,此时每个key就要按h = Hash(key) % (N-1)重新计算;同样,如果新增了一台服务器,虽然原有服务器编号不用改变,
    但是要按h = Hash(key) % (N+1)重新计算哈希值。因此系统中一旦有服务器变更,大量的key会被
    重定位到不同的服务器从而造成大量的缓存不命中。
    而这种情况在分布式系统中是非常糟糕的。

一个设计良好的分布式哈希方案应该具有良好的单调性,即服务节点的增减不会造成大量哈希重定位。一致性hash算法就是这样一种hash方案。

解决方法-一致性hash算法##


算法简述
一致性哈希算法(Consistent Hashing)最早在论文《Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web》中被提出。简单来说,一致性哈希将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0 - 2的32次方
-1(即哈希值是一个32位无符号整形),整个哈希空间环如下:

一致性hash函数值空间.png

整个空间按顺时针方向组织。0和232-1在零点中方向重合。

下一步将各个服务器使用H进行一个哈希,具体可以选择服务器的ip或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置,这里假设将上文中三台服务器使用ip地址哈希后在环空间的位置如下:

一致性hash函数值空间 (1).png

接下来使用如下算法定位数据访问到相应服务器:将数据key使用相同的函数H计算出哈希值h,通根据h确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器。

例如我们缓存服务器中有A、B、C、D四个key对应的数据对象,经过哈希计算后,在环空间上的位置如下:

一致性hash函数值空间 (2).png

截止到现在似乎还没有什么觉得神奇的地方,请往下看:
容错性与可扩展性分析
下面分析一致性哈希算法的容错性和可扩展性。现假设Redis-2宕机了:

一致性hash函数值空间 (3).png

我们可以看到ACD节点并不受影响,只有B节点被重定向至Redis-0。

下面考虑另外一种情况,如果我们在系统中增加一台服务器Redis-3 Server:

一致性hash函数值空间 (4).png

可以发现对于C这个key,重新定位至Redis-3 服务器,其他非C的key均不受影响。

综上所述,一致性哈希算法对于节点的增减都只需重定位环空间中的一小部分数据,具有较好的容错性和可扩展性。

数据倾斜问题


解决办法-虚拟节点
一致性哈希算法在服务节点太少时,容易因为节点分部不均匀而造成数据倾斜问题。例如我们的系统中有两台服务器,其环分布如下:

一致性hash函数值空间 (5).png

此时必然造成大量数据集中到Redis-1上,而只有极少量会定位到Redis-0上。为了解决这种数据倾斜问题,一致性哈希算法引入了虚拟节点机制,即对每一个服务节点计算多个哈希,每个计算结果位置都放置一个此服务节点,称为虚拟节点。具体做法可以在服务器ip或主机名的后面增加编号来实现。例如上面的情况,我们决定为每台服务器计算三个虚拟节点,于是可以分别计算“Redis-1 #1”、“Redis-1 #2”、“Redis-1 #3”、“Redis-0 #1”、“Redis-0 #2”、“Redis-0 #3”的哈希值,于是形成六个虚拟节点:

一致性hash函数值空间 (6).png

同时数据定位算法不变,只是多了一步虚拟节点到实际节点的映射,例如定位到“Redis-1#1”、“Redis-1#2”、“Redis-1#3”三个虚拟节点的数据均定位到Redis-1上。这样就解决了服务节点少时数据倾斜的问题。在实际应用中,通常将虚拟节点数设置为32甚至更大,因此即使很少的服务节点也能做到相对均匀的数据分布。

总结

目前一致性哈希基本成为了分布式系统组件的标准配置,例如Redis的各种客户端都提供内置的一致性哈希支持。本文只是简要介绍了这个算法的思想,以及在分布式应用中的应用场景。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容

  • 【转】缓存在分布式系统中的应用 缓存在分布式系统中的应用 摘要 缓存是分布式系统中的重要组件,主要解决高并发,大数...
    武汉苏乞儿阅读 848评论 0 10
  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,580评论 18 139
  • 缓存在分布式系统中的应用 摘要 缓存是分布式系统中的重要组件,主要解决高并发,大数据场景下,热点数据访问的性能问题...
    garyond阅读 1,596评论 0 12
  • 转载:http://blog.codinglabs.org/articles/consistent-hashing...
    qf1007阅读 704评论 0 3
  • 文/覃路白 日历一页一页撕下来,日记一篇一篇翻过去。恍如一夕之间,窗外那片树林从灰到绿,从绿变黄,又从黄褪成了灰,...
    覃路白阅读 454评论 4 9