React16源码解析(一)- 图解Fiber架构

原文链接:https://segmentfault.com/a/1190000020736966

React源码解析系列文章欢迎阅读:
React16源码解析(一)- 图解Fiber架构
React16源码解析(二)-创建更新
React16源码解析(三)-ExpirationTime
React16源码解析(四)-Scheduler
React16源码解析(五)-更新流程渲染阶段1
React16源码解析(六)-更新流程渲染阶段2
React16源码解析(七)-更新流程渲染阶段3
React16源码解析(八)-更新流程提交阶段
正在更新中...

老的react架构从setState到render完成,整个过程是主要霸占主线程的。如果组件比较大,或者有些复杂的逻辑,长时间占用主线程,会导致一些input框输入操作、动画等得不到响应,从而表现出页面卡顿。

为了解决上述的问题,React引入了一个全新的异步渲染架构:Fiber。

概述

这是React 核心算法的一次大的更新,重写了 React 的 reconciliation 算法。reconciliation 算法是用来更新并且渲染DOM树的算法。以前React 15.x的版本使用的算法称为“stack reconciliation”,现在称为“fiber reconciler”。

fiber reconciler主要的特点是可以把更新流程拆分成一个一个的小的单元进行更新,并且可以中断,转而去执行高优先级的任务或者浏览器的动画渲染等,等主线程空闲了再继续执行更新。

另外的新功能:
1、render方法可以返回多元素(即可以返回数组)
2、支持异常边界处理异常;

Fiber Tree

为了达到上述的效果,react将底层更新单元的数据结构改成了链表结构。以前的协调算法是递归调用,通过react dom 树级关系构成的栈递归。而fiber是扁平化的链表的数据存储结构,通过child找子节点,return找父节点,sibling找兄弟节点。遍历从递归改为循环。

具体的结构参照我下面画的图:


fiber_tree.png

创建上面的fiber树对应的代码:

import React from 'react';
import ReactDOM from 'react-dom'

class List extends React.Component {
  render () {
    return (
      [1,2,3].map((item)=>{
        return <span>span</span>
      })
    )
  }
}

class App extends React.Component {
    render () {
      return (
        [<button>按钮</button>,<List/>,<div>div</div>]
      );
    }
}
ReactDOM.render(
 <App />,
 document.getElementById("root")
)

构建Fiber Tree

第一次渲染的时候会构建好这颗fiber树。以下是构建这颗fiber树的过程。
创建过程和更新过程其实是一个过程,可以说创建过程是更新过程的一个子集,相当于每个节点的更新都是新建一个fiber节点。
其中粉色节点代表更新完成的节点,当所有的节点都变成粉色说明整棵fiber树都已经准备好了。可以提交到真实dom树上去了。

1

创建一个RootFiber节点

创建RootFiber节点过程的详细源码解析欢迎阅读:
React16源码解析(二)-创建更新

fiber_tree_create_process0.png

2

构建/更新fiber树过程详细源码解析欢迎阅读:
React16源码解析(五)-更新流程渲染阶段1
React16源码解析(六)-更新流程渲染阶段2
React16源码解析(七)-更新流程渲染阶段3

沿着子节点不断的创建fiber子节点,如果发现子节点是一个数组,会把子节点都创建好,之后拿到第一个子节点再往下走。
这里图中第一个子节点button它已经没有子节点了,这个时候就会把这个节点是否有更新计算出来,算好更新之后就往回走了。我就称这个节点构建完成了。
注:橘色节点只是创建好了fiber还没有完成。

fiber_tree_create_process1.png

3

因为3号节点(button)没有子节点了,所以我们向它的兄弟节点出发了。到达4号节点,又会以同样的方式遍历子节点。

fiber_tree_create_process2.png

4

当4号节点的子节点都完成之后,回到4号节点,再完成4号节点,因为4号节点存在兄弟节点,所以再向兄弟节点出发。

fiber_tree_create_process3.png

5

到达5号节点之后,5号节点再以同样的方式遍历子节点。

fiber_tree_create_process4.png

6

9号节点完成之后,就会一层层返回到root节点。因为返回的路上已经没有兄弟节点了。直到root节点完成,这颗fiber树就已经渲染好了,接下来就可以提交渲染树到真实的dom树了。

fiber_tree_create_process5.png

更新Fiber Tree

假设我现在想要更新7号节点。
如下代码:

import React from 'react';
import ReactDOM from 'react-dom'

class List extends React.Component {
  render () {
    const { list } = this.props;
    return (
      list.map((item)=>{
        return <span>{item}</span>
      })
    )
  }
}

class App extends React.Component {
    constructor() {
      super();
      this.state = {
        list:[1,2,3]
      }
    }
    clickButton = () => {
      this.setState({
        list:[1,4,3]
      })
    }
    render () {
      return (
        [<button onClick={this.clickButton}>按钮</button>,<List list={this.state.list}/>,<div>div</div>]
      );
    }
}
ReactDOM.render(
 <App />,
 document.getElementById("root")
)

点击按钮就会更新7号节点的内容,将 2 -> 4。

1

当遍历到7号节点时候,发现7号节点是需要更新的,因为它身上有个叫effectTag的标志,值为4表示的是要更新本节点。这个节点需要更新所以把7号节点记录在父节点的firstEffect链表上。如图所示:

fiber_tree_update.png

2

当遍历到4号节点的时候,因为它身上firstEffect不为空,所以它会把他身上的firstEffect接到父节点的身上。如图所示:

fiber_tree_update2.png

3

遍历到2号节点时,同样的道理:

fiber_tree_update4.png

其实这里firstEffect链表后面链接的7号是一直指向7号节点的指针。在提交阶段(提交到dom树上)直接遍历root节点上的firstEffect链表就可以了。因为这上面记录了那些节点有更新,只需要更新我们标记好的节点就可以啦。

可中断

经过上述过程,可能大家会产生疑问,说好的可中断呢?怎么一个字也没提呢???
别急,我现在一句话就能讲清了:
上面我的图中,我的每一个步骤(实际情况步骤更多,我没画那么细)是可以不连续占用主线程的。

react把更新这颗fiber树切分成了好多个任务,每完成一小块任务,就会看看现在主线程是否有空闲,有空闲的话就继续下一个小任务,没有空闲那就把主线程让给浏览器或者更高优先级任务。那么这颗fiber树的更新就会被停滞,得到主线程有空了,在继续渲染。

那么问题又来,我怎么知道主线程什么时候有空?什么时候没空?
这个时候我们想起了requestIdleCallback这个原始api。但是~ react并没有用上requestIdleCallback。主要还是因为浏览器的兼容性问题。所以采用了polyfill方案。
详细源码解析欢迎阅读:
React16源码解析(四)-Scheduler
React16源码解析(三)-ExpirationTime

注意:上面我构建的fiber树只是一个虚拟的dom结构,这个fiber树全部更新好了之后,就会一次性的提交到真实的dom树上,这个一次性的提交是不可以中断的。
提交阶段的详细源码解析欢迎阅读:
React16源码解析(八)-更新流程提交阶段

文章如有不妥,欢迎指正~

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容