03 特征工程 - 特征转换 - 分词、Jieba分词

02 特征工程 - 数据不平衡

特征转换主要指将原始数据中的字段数据进行转换操作,从而得到适合进行算法模型构建的输入数据(数值型数据),在这个过程中主要包括但不限于以下几种数据的处理:

• 文本数据转换为数值型数据
• 缺省值填充
• 定性特征属性哑编码
• 定量特征属性二值化
• 特征标准化与归一化

分词

分词是指将文本数据转换为一个一个的单词,是NLP自然语言处理过程中的基础;因为对于文本信息来讲,我们可以认为文本中的单词可以体现文本的特征信息,所以在进行自然语言相关的机器学习的时候,第一操作就是需要将文本信息转换为单词序列,使用单词序列来表达文本的特征信息。

分词: 通过某种技术将连续的文本分隔成更具有语言语义学上意义的词。这个过程就叫做分词。

分词的常见方法
1、按照文本/单词特征进行划分:对于英文文档,可以基于空格进行单词划分。
2、词典匹配:匹配方式可以从左到右,从右到左。对于匹配中遇到的多种分段可能性,通常会选取分隔出来词的数目最小的。
3、基于统计的方法:隐马尔可夫模型(HMM)、最大熵模型(ME),估计相邻汉字之间的关联性,进而实现切分。
4、基于深度学习:神经网络抽取特征、联合建模。


Jieba分词

jieba:中文分词模块;
Python中汉字分词包:jieba
安装方式: pip install jieba
Github:https://github.com/fxsjy/jieba

jieba分词原理:
1、字符串匹配:把汉字串与词典中的词条进行匹配,识别出一个词。
2、理解分词法:通过分词子系统、句法语义子系统、总控部分来模拟人对句子的理解。(试验阶段)
3、统计分词法:建立大规模语料库,通过隐马尔可夫模型或其他模型训练,进行分词(主流方法)

jieba分词模式:
1、全模式 jieba.cut(str,cut_all=True)
2、精确模式 jieba.cut(str)
3、搜索引擎模式 jieba.cut_for_search(str)

分词特征提取: 返回TF/IDF权重最大的关键词,默认返回20个。
jieba.analyse.extract_tags(str,topK=20)

自定义词典: 帮助切分一些无法识别的新词,加载词典:jieba.load_userdict(‘dict.txt’)

调整词典: add_word(word, freq=None, tag=None)del_word(word)可在程序中动态修改词典。使用suggest_freq(segment, tune=True) 可调节单个词语的词频。

04 特征工程 - 特征转换 - 文本特征属性转换

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容