一个今日头条的面试题——LRU原理和Redis实现

很久前参加过今日头条的面试,遇到一个题,目前半部分是如何实现 LRU,后半部分是 Redis 中如何实现 LRU。

我的第一反应应该是内存不够的场景下,淘汰旧内容的策略。LRU ... Least Recent Used,淘汰掉最不经常使用的。可以稍微多补充两句,因为计算机体系结构中,最大的最可靠的存储是硬盘,它容量很大,并且内容可以固化,但是访问速度很慢,所以需要把使用的内容载入内存中;内存速度很快,但是容量有限,并且断电后内容会丢失,并且为了进一步提升性能,还有CPU内部的 L1 Cache,L2 Cache等概念。因为速度越快的地方,它的单位成本越高,容量越小,新的内容不断被载入,旧的内容肯定要被淘汰,所以就有这样的使用背景。

LRU原理

在一般标准的操作系统教材里,会用下面的方式来演示 LRU 原理,假设内存只能容纳3个页大小,按照 7 0 1 2 0 3 0 4 的次序访问页。假设内存按照栈的方式来描述访问时间,在上面的,是最近访问的,在下面的是,最远时间访问的,LRU就是这样工作的。

但是如果让我们自己设计一个基于 LRU 的缓存,这样设计可能问题很多,这段内存按照访问时间进行了排序,会有大量的内存拷贝操作,所以性能肯定是不能接受的。

那么如何设计一个LRU缓存,使得放入和移除都是 O(1) 的,我们需要把访问次序维护起来,但是不能通过内存中的真实排序来反应,有一种方案就是使用双向链表。

基于 HashMap 和 双向链表实现 LRU 的

整体的设计思路是,可以使用 HashMap 存储 key,这样可以做到 save 和 get key的时间都是 O(1),而 HashMap 的 Value 指向双向链表实现的 LRU 的 Node 节点,如图所示。

LRU 存储是基于双向链表实现的,下面的图演示了它的原理。其中 head 代表双向链表的表头,tail 代表尾部。首先预先设置 LRU 的容量,如果存储满了,可以通过 O(1) 的时间淘汰掉双向链表的尾部,每次新增和访问数据,都可以通过 O(1)的效率把新的节点增加到对头,或者把已经存在的节点移动到队头。

下面展示了,预设大小是 3 的,LRU存储的在存储和访问过程中的变化。为了简化图复杂度,图中没有展示 HashMap部分的变化,仅仅演示了上图 LRU 双向链表的变化。我们对这个LRU缓存的操作序列如下:

save("key1", 7)

save("key2", 0)

save("key3", 1)

save("key4", 2)

get("key2")

save("key5", 3)

get("key2")

save("key6", 4)

相应的 LRU 双向链表部分变化如下:


s = save, g = get

总结一下核心操作的步骤:

save(key, value),首先在 HashMap 找到 Key 对应的节点,如果节点存在,更新节点的值,并把这个节点移动队头。如果不存在,需要构造新的节点,并且尝试把节点塞到队头,如果LRU空间不足,则通过 tail 淘汰掉队尾的节点,同时在 HashMap 中移除 Key。

get(key),通过 HashMap 找到 LRU 链表节点,因为根据LRU 原理,这个节点是最新访问的,所以要把节点插入到队头,然后返回缓存的值。

完整基于 Java 的代码参考如下

```

class DLinkedNode {

    String key;

    int value;

    DLinkedNode pre;

    DLinkedNode post;

}

```

LRU Cache

```

public class LRUCache {


    private Hashtable

            cache = new Hashtable();

    private int count;

    private int capacity;

    private DLinkedNode head, tail;


    public LRUCache(int capacity) {

        this.count = 0;

        this.capacity = capacity;


        head = new DLinkedNode();

        head.pre = null;


        tail = new DLinkedNode();

        tail.post = null;


        head.post = tail;

        tail.pre = head;

    }


    public int get(String key) {


        DLinkedNode node = cache.get(key);

        if(node == null){

            return -1; // should raise exception here.

        }


        // move the accessed node to the head;

        this.moveToHead(node);


        return node.value;

    }



    public void set(String key, int value) {

        DLinkedNode node = cache.get(key);


        if(node == null){


            DLinkedNode newNode = new DLinkedNode();

            newNode.key = key;

            newNode.value = value;


            this.cache.put(key, newNode);

            this.addNode(newNode);


            ++count;


            if(count > capacity){

                // pop the tail

                DLinkedNode tail = this.popTail();

                this.cache.remove(tail.key);

                --count;

            }

        }else{

            // update the value.

            node.value = value;

            this.moveToHead(node);

        }

    }

    /**

     * Always add the new node right after head;

     */

    private void addNode(DLinkedNode node){

        node.pre = head;

        node.post = head.post;


        head.post.pre = node;

        head.post = node;

    }


    /**

     * Remove an existing node from the linked list.

     */

    private void removeNode(DLinkedNode node){

        DLinkedNode pre = node.pre;

        DLinkedNode post = node.post;


        pre.post = post;

        post.pre = pre;

    }


    /**

     * Move certain node in between to the head.

     */

    private void moveToHead(DLinkedNode node){

        this.removeNode(node);

        this.addNode(node);

    }


    // pop the current tail.

    private DLinkedNode popTail(){

        DLinkedNode res = tail.pre;

        this.removeNode(res);

        return res;

    }

}

```

那么问题的后半部分,是 Redis 如何实现,这个问题这么问肯定是有坑的,那就是redis肯定不是这样实现的。

Redis的LRU实现

如果按照HashMap和双向链表实现,需要额外的存储存放 next 和 prev 指针,牺牲比较大的存储空间,显然是不划算的。所以Redis采用了一个近似的做法,就是随机取出若干个key,然后按照访问时间排序后,淘汰掉最不经常使用的,具体分析如下:

为了支持LRU,Redis 2.8.19中使用了一个全局的LRU时钟,server.lruclock,定义如下,

```

#define REDIS_LRU_BITS 24

unsigned lruclock:REDIS_LRU_BITS; /* Clock for LRU eviction */

```

默认的LRU时钟的分辨率是1秒,可以通过改变REDIS_LRU_CLOCK_RESOLUTION宏的值来改变,Redis会在serverCron()中调用updateLRUClock定期的更新LRU时钟,更新的频率和hz参数有关,默认为100ms一次,如下,

```

#define REDIS_LRU_CLOCK_MAX ((1<lru */

#define REDIS_LRU_CLOCK_RESOLUTION 1 /* LRU clock resolution in seconds */


void updateLRUClock(void) {

    server.lruclock = (server.unixtime / REDIS_LRU_CLOCK_RESOLUTION) &

                                                REDIS_LRU_CLOCK_MAX;

}

```

server.unixtime是系统当前的unix时间戳,当 lruclock 的值超出REDIS_LRU_CLOCK_MAX时,会从头开始计算,所以在计算一个key的最长没有访问时间时,可能key本身保存的lru访问时间会比当前的lrulock还要大,这个时候需要计算额外时间,如下,

```

/* Given an object returns the min number of seconds the object was never

 * requested, using an approximated LRU algorithm. */

unsigned long estimateObjectIdleTime(robj *o) {

    if (server.lruclock >= o->lru) {

        return (server.lruclock - o->lru) * REDIS_LRU_CLOCK_RESOLUTION;

    } else {

        return ((REDIS_LRU_CLOCK_MAX - o->lru) + server.lruclock) *

                    REDIS_LRU_CLOCK_RESOLUTION;

    }

}

```

Redis支持和LRU相关淘汰策略包括,

volatile-lru设置了过期时间的key参与近似的lru淘汰策略

allkeys-lru所有的key均参与近似的lru淘汰策略

当进行LRU淘汰时,Redis按如下方式进行的,

```

......

            /* volatile-lru and allkeys-lru policy */

            else if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||

                server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)

            {

                for (k = 0; k < server.maxmemory_samples; k++) {

                    sds thiskey;

                    long thisval;

                    robj *o;


                    de = dictGetRandomKey(dict);

                    thiskey = dictGetKey(de);

                    /* When policy is volatile-lru we need an additional lookup

                     * to locate the real key, as dict is set to db->expires. */

                    if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)

                        de = dictFind(db->dict, thiskey);

                    o = dictGetVal(de);

                    thisval = estimateObjectIdleTime(o);


                    /* Higher idle time is better candidate for deletion */

                    if (bestkey == NULL || thisval > bestval) {

                        bestkey = thiskey;

                        bestval = thisval;

                    }

                }

            }

            ......

```

Redis会基于server.maxmemory_samples配置选取固定数目的key,然后比较它们的lru访问时间,然后淘汰最近最久没有访问的key,maxmemory_samples的值越大,Redis的近似LRU算法就越接近于严格LRU算法,但是相应消耗也变高,对性能有一定影响,样本值默认为5。

总结

看来,虽然一个简单的概念,在工业界的产品中,为了追求空间的利用率,也会采用权衡的实现方案。

对Java架构技术感兴趣的同学,欢迎加QQ群619881427,一起学习,相互讨论。

群内已经有小伙伴将知识体系整理好(源码,笔记,PPT,学习视频),欢迎加群免费领取。

分享给喜欢Java的,喜欢编程,有梦想成为架构师的程序员们,希望能够帮助到你们。

不是Java的程序员也没关系,帮忙转发给更多朋友!谢谢。

一个分享小技巧点击阅读原文也。可以轻松获取学习资料哦!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342