我们今天先讨论input组件的功能和基本插件。前面我们意见介绍过了,input组件是Logstash的眼睛和鼻子,负责收集数据的,那么们就不得不思考两个问题,第一个问题要清楚的就是,元数据在哪,当然,这就包含了元数据是什么类型,属于什么业务;第二个问题要清楚怎么去拿到元数据。只要搞明白了这两个问题,那么Logstash的input组件就算是弄明白了。
对于第一个问题,元数据的类型有很多,比如说你的元数据可以是日志、报表、可以是数据库的内容等等。元数据是什么样子的我们不需要关心,我们要关系的是元数据是什么类型的,只要你知道元数据是什么类型的,你才能给他分类,或者说给他一个type,这很重要,type对于你后面的工作处理是非常有帮助的。所以第一个问题的重心元数据在吗,是什么,现在已经是清楚了。那么进行第二个问题。
第二个问题的核心是怎么拿到这些不同类型的原数据?这是一个真个input组件的核心内容了,我们分门别类的来看待这和解决个问题。
首先,我们肯定需要认同的,什么样的数据源,就需要使用什么样的方式去获取数据。
学习原始的文档,请见:https://www.elastic.co/guide/en/logstash/current/input-plugins.html
我们列举几种:
1、文件类型:文件类型,顾名思义,文件数据源,我们可以使用input组件的file插件来获取数据。file{}插件有很多的属性参数,我们可以张开讲解一下。具体内容在下面的代码中展示:
input{
file{
#path属性接受的参数是一个数组,其含义是标明需要读取的文件位置
path => [‘pathA’,‘pathB’]
#表示多就去path路径下查看是够有新的文件产生。默认是15秒检查一次。
discover_interval => 15
#排除那些文件,也就是不去读取那些文件
exclude => [‘fileName1’,‘fileNmae2’]
#被监听的文件多久没更新后断开连接不在监听,默认是一个小时。
close_older => 3600
#在每次检查文件列 表的时候, 如果一个文件的最后 修改时间 超过这个值, 就忽略这个文件。 默认一天。
ignore_older => 86400
#logstash 每隔多 久检查一次被监听文件状态( 是否有更新) , 默认是 1 秒。
stat_interval => 1
#sincedb记录数据上一次的读取位置的一个index
sincedb_path => ’$HOME/. sincedb‘
#logstash 从什么 位置开始读取文件数据, 默认是结束位置 也可以设置为:beginning 从头开始
start_position => ‘beginning’
#注意:这里需要提醒大家的是,如果你需要每次都从同开始读取文件的话,关设置start_position => beginning是没有用的,你可以选择sincedb_path 定义为 /dev/null
}
}
2、数据库类型:数据库类型的数据源,就意味着我们需要去和数据库打交道了是吗?是的!那是必须的啊,不然怎么获取数据呢。input组件如何获取数据库类的数据呢?没错,下面即将隆重登场的是input组件的JDBC插件jdbc{}。同样的,jdbc{}有很多的属性,我们在下面的代码中作出说明;
input{
jdbc{
#jdbc sql server 驱动,各个数据库都有对应的驱动,需自己下载
jdbc_driver_library => "/etc/logstash/driver.d/sqljdbc_2.0/enu/sqljdbc4.jar"
#jdbc class 不同数据库有不同的 class 配置
jdbc_driver_class => "com.microsoft.sqlserver.jdbc.SQLServerDriver"
#配置数据库连接 ip 和端口,以及数据库
jdbc_connection_string => "jdbc:sqlserver://200.200.0.18:1433;databaseName=test_db"
#配置数据库用户名
jdbc_user =>
#配置数据库密码
jdbc_password =>
#上面这些都不重要,要是这些都看不懂的话,你的老板估计要考虑换人了。重要的是接下来的内容。
# 定时器 多久执行一次SQL,默认是一分钟
# schedule => 分 时 天 月 年
# schedule => * 22 * * * 表示每天22点执行一次
schedule => "* * * * *"
#是否清除 last_run_metadata_path 的记录,如果为真那么每次都相当于从头开始查询所有的数据库记录
clean_run => false
#是否需要记录某个column 的值,如果 record_last_run 为真,可以自定义我们需要表的字段名称,
#此时该参数就要为 true. 否则默认 track 的是 timestamp 的值.
use_column_value => true
#如果 use_column_value 为真,需配置此参数. 这个参数就是数据库给出的一个字段名称。当然该字段必须是递增的,可以是 数据库的数据时间这类的
tracking_column => create_time
#是否记录上次执行结果, 如果为真,将会把上次执行到的 tracking_column 字段的值记录下来,保存到 last_run_metadata_path 指定的文件中
record_last_run => true
#们只需要在 SQL 语句中 WHERE MY_ID > :last_sql_value 即可. 其中 :last_sql_value 取得就是该文件中的值
last_run_metadata_path => "/etc/logstash/run_metadata.d/my_info"
#是否将字段名称转小写。
#这里有个小的提示,如果你这前就处理过一次数据,并且在Kibana中有对应的搜索需求的话,还是改为true,
#因为默认是true,并且Kibana是大小写区分的。准确的说应该是ES大小写区分
lowercase_column_names => false
#你的SQL的位置,当然,你的SQL也可以直接写在这里。
#statement => SELECT * FROM tabeName t WHERE t.creat_time > :last_sql_value
statement_filepath => "/etc/logstash/statement_file.d/my_info.sql"
#数据类型,标明你属于那一方势力。单了ES哪里好给你安排不同的山头。
type => "my_info"
}
#注意:外载的SQL文件就是一个文本文件就可以了,还有需要注意的是,一个jdbc{}插件就只能处理一个SQL语句,
#如果你有多个SQL需要处理的话,只能在重新建立一个jdbc{}插件。
}
接着第三种情况:
input {
beats {
#接受数据端口
port => 5044
#数据类型
type => "logs"
}
#这个插件需要和filebeat进行配很这里不做多讲,到时候结合起来一起介绍。
}
现在我们基本清楚的知道了input组件需要做的事情和如何去做,当然他还有很多的插件可以进行数据的收集,比如说TCP这类的,还有可以对数据进行encode,这些感兴趣的朋友可以自己去查看,我说的只是我自己使用的。一般情况下我说的三种插件已经足够了
---------------------
作者:xcl119xxcl
来源:CSDN
原文:https://blog.csdn.net/xcl119xcl/article/details/89244191
版权声明:本文为博主原创文章,转载请附上博文链接!