优先级队列

一、定义

优先级队列有很多种实现方式。其中使用“堆”来实现“优先队列”是最常见的,堆的底层是完全二叉树的形式。

1-0 堆的示意图

上述是一个小顶堆(最小堆)的示意图

最小堆是一种经过排序的完全二叉树,其中任一非终端节点的数据值均不大于其左子节点和右子节点的值。

二、API

2-0 大顶堆的API定义

2.1 上浮和下沉

堆的操作中,最重要的就是堆元素的上浮和下沉操作:

  • 上浮(siftup)
    在堆中插入元素后(完全二叉树的最右下方插入),需要进行上浮操作,重新使得堆有序。


    2-1-1 大顶堆上浮元素
private void swim(int k) {
    while (k > 1 && (a[k]>a[k/2])) {
        exch(k, k/2);  //交换元素
        k = k/2;
    }
}
  • 下沉(siftdown)
    当删除一个堆元素(堆顶)时,首先将堆顶元素与最右下方元素交换,然后删除。此时堆顶元素需要进行下沉操作,重新使得堆有序。


    2-1-2 大顶堆下沉元素
private void sink(int k) {
    while (2*k <= n) {
        //j指向k的较小的子结点
        int j = 2*k;
        if (j < n && less(j, j+1)) j++;
        if (!less(k, j)) break;
        swap(k, j);
        k = j;
    }
}

2.2 插入元素

新增元素添加到树的底层最右侧,然后上浮。


2-2-1 大顶堆的插入

2.3 删除最大元素

将树的最后一个元素与第一个元素交换,删除最后一个元素,然后从堆顶开始下沉。


2-3-1 大顶堆删除最大元素

三、完整实现

3.1 大顶堆

3-1-1 大顶堆的操作用例
public class MaxPQ<Key> implements Iterable<Key> {
    private Key[] pq;                    // store items at indices 1 to n
    private int n;                       // number of items on priority queue
    private Comparator<Key> comparator;  // optional comparator

    /**
     * Initializes an empty priority queue with the given initial capacity.
     *
     * @param  initCapacity the initial capacity of this priority queue
     */
    public MaxPQ(int initCapacity) {
        pq = (Key[]) new Object[initCapacity + 1];
        n = 0;
    }

    /**
     * Initializes an empty priority queue.
     */
    public MaxPQ() {
        this(1);
    }

    /**
     * Initializes an empty priority queue with the given initial capacity,
     * using the given comparator.
     *
     * @param  initCapacity the initial capacity of this priority queue
     * @param  comparator the order in which to compare the keys
     */
    public MaxPQ(int initCapacity, Comparator<Key> comparator) {
        this.comparator = comparator;
        pq = (Key[]) new Object[initCapacity + 1];
        n = 0;
    }

    /**
     * Initializes an empty priority queue using the given comparator.
     *
     * @param  comparator the order in which to compare the keys
     */
    public MaxPQ(Comparator<Key> comparator) {
        this(1, comparator);
    }

    /**
     * Initializes a priority queue from the array of keys.
     * Takes time proportional to the number of keys, using sink-based heap construction.
     *
     * @param  keys the array of keys
     */
    public MaxPQ(Key[] keys) {
        n = keys.length;
        pq = (Key[]) new Object[keys.length + 1];
        for (int i = 0; i < n; i++)
            pq[i+1] = keys[i];
        for (int k = n/2; k >= 1; k--)
            sink(k);
        assert isMaxHeap();
    }
      
    /**
     * Returns true if this priority queue is empty.
     *
     * @return {@code true} if this priority queue is empty;
     *         {@code false} otherwise
     */
    public boolean isEmpty() {
        return n == 0;
    }

    /**
     * Returns the number of keys on this priority queue.
     *
     * @return the number of keys on this priority queue
     */
    public int size() {
        return n;
    }

    /**
     * Returns a largest key on this priority queue.
     *
     * @return a largest key on this priority queue
     * @throws NoSuchElementException if this priority queue is empty
     */
    public Key max() {
        if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
        return pq[1];
    }

    // helper function to double the size of the heap array
    private void resize(int capacity) {
        assert capacity > n;
        Key[] temp = (Key[]) new Object[capacity];
        for (int i = 1; i <= n; i++) {
            temp[i] = pq[i];
        }
        pq = temp;
    }

    /**
     * Adds a new key to this priority queue.
     *
     * @param  x the new key to add to this priority queue
     */
    public void insert(Key x) {

        // double size of array if necessary
        if (n == pq.length - 1) resize(2 * pq.length);

        // add x, and percolate it up to maintain heap invariant
        pq[++n] = x;
        swim(n);
        assert isMaxHeap();
    }

    /**
     * Removes and returns a largest key on this priority queue.
     *
     * @return a largest key on this priority queue
     * @throws NoSuchElementException if this priority queue is empty
     */
    public Key delMax() {
        if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
        Key max = pq[1];
        exch(1, n--);
        sink(1);
        pq[n+1] = null;     // to avoid loiterig and help with garbage collection
        if ((n > 0) && (n == (pq.length - 1) / 4)) resize(pq.length / 2);
        assert isMaxHeap();
        return max;
    }

   /***************************************************************************
    * Helper functions to restore the heap invariant.
    ***************************************************************************/
    private void swim(int k) {
        while (k > 1 && less(k/2, k)) {
            exch(k, k/2);
            k = k/2;
        }
    }

    private void sink(int k) {
        while (2*k <= n) {
            int j = 2*k;
            if (j < n && less(j, j+1)) j++;
            if (!less(k, j)) break;
            exch(k, j);
            k = j;
        }
    }

   /***************************************************************************
    * Helper functions for compares and swaps.
    ***************************************************************************/
    private boolean less(int i, int j) {
        if (comparator == null) {
            return ((Comparable<Key>) pq[i]).compareTo(pq[j]) < 0;
        }
        else {
            return comparator.compare(pq[i], pq[j]) < 0;
        }
    }

    private void exch(int i, int j) {
        Key swap = pq[i];
        pq[i] = pq[j];
        pq[j] = swap;
    }

    // is pq[1..N] a max heap?
    private boolean isMaxHeap() {
        return isMaxHeap(1);
    }

    // is subtree of pq[1..n] rooted at k a max heap?
    private boolean isMaxHeap(int k) {
        if (k > n) return true;
        int left = 2*k;
        int right = 2*k + 1;
        if (left  <= n && less(k, left))  return false;
        if (right <= n && less(k, right)) return false;
        return isMaxHeap(left) && isMaxHeap(right);
    }

    /**
     * Returns an iterator that iterates over the keys on this priority queue
     * in descending order.
     * The iterator doesn't implement {@code remove()} since it's optional.
     *
     * @return an iterator that iterates over the keys in descending order
     */
    public Iterator<Key> iterator() {
        return new HeapIterator();
    }

    private class HeapIterator implements Iterator<Key> {
        // create a new pq
        private MaxPQ<Key> copy;

        // add all items to copy of heap
        // takes linear time since already in heap order so no keys move
        public HeapIterator() {
            if (comparator == null) copy = new MaxPQ<Key>(size());
            else                    copy = new MaxPQ<Key>(size(), comparator);
            for (int i = 1; i <= n; i++)
                copy.insert(pq[i]);
        }
        public boolean hasNext()  { return !copy.isEmpty();                     }
        public void remove()      { throw new UnsupportedOperationException();  }
        public Key next() {
            if (!hasNext()) throw new NoSuchElementException();
            return copy.delMax();
        }
    }
}

3.2 小顶堆

public class MinPQ<Key> implements Iterable<Key> {
    private Key[] pq;                    // store items at indices 1 to n
    private int n;                       // number of items on priority queue
    private Comparator<Key> comparator;  // optional comparator

    /**
     * Initializes an empty priority queue with the given initial capacity.
     *
     * @param  initCapacity the initial capacity of this priority queue
     */
    public MinPQ(int initCapacity) {
        pq = (Key[]) new Object[initCapacity + 1];
        n = 0;
    }

    /**
     * Initializes an empty priority queue.
     */
    public MinPQ() {
        this(1);
    }

    /**
     * Initializes an empty priority queue with the given initial capacity,
     * using the given comparator.
     *
     * @param  initCapacity the initial capacity of this priority queue
     * @param  comparator the order in which to compare the keys
     */
    public MinPQ(int initCapacity, Comparator<Key> comparator) {
        this.comparator = comparator;
        pq = (Key[]) new Object[initCapacity + 1];
        n = 0;
    }

    /**
     * Initializes an empty priority queue using the given comparator.
     *
     * @param  comparator the order in which to compare the keys
     */
    public MinPQ(Comparator<Key> comparator) {
        this(1, comparator);
    }

    /**
     * Initializes a priority queue from the array of keys.
     * <p>
     * Takes time proportional to the number of keys, using sink-based heap construction.
     *
     * @param  keys the array of keys
     */
    public MinPQ(Key[] keys) {
        n = keys.length;
        pq = (Key[]) new Object[keys.length + 1];
        for (int i = 0; i < n; i++)
            pq[i+1] = keys[i];
        for (int k = n/2; k >= 1; k--)
            sink(k);
        assert isMinHeap();
    }

    /**
     * Returns true if this priority queue is empty.
     *
     * @return {@code true} if this priority queue is empty;
     *         {@code false} otherwise
     */
    public boolean isEmpty() {
        return n == 0;
    }

    /**
     * Returns the number of keys on this priority queue.
     *
     * @return the number of keys on this priority queue
     */
    public int size() {
        return n;
    }

    /**
     * Returns a smallest key on this priority queue.
     *
     * @return a smallest key on this priority queue
     * @throws NoSuchElementException if this priority queue is empty
     */
    public Key min() {
        if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
        return pq[1];
    }

    // helper function to double the size of the heap array
    private void resize(int capacity) {
        assert capacity > n;
        Key[] temp = (Key[]) new Object[capacity];
        for (int i = 1; i <= n; i++) {
            temp[i] = pq[i];
        }
        pq = temp;
    }

    /**
     * Adds a new key to this priority queue.
     *
     * @param  x the key to add to this priority queue
     */
    public void insert(Key x) {
        // double size of array if necessary
        if (n == pq.length - 1) resize(2 * pq.length);

        // add x, and percolate it up to maintain heap invariant
        pq[++n] = x;
        swim(n);
        assert isMinHeap();
    }

    /**
     * Removes and returns a smallest key on this priority queue.
     *
     * @return a smallest key on this priority queue
     * @throws NoSuchElementException if this priority queue is empty
     */
    public Key delMin() {
        if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
        Key min = pq[1];
        exch(1, n--);
        sink(1);
        pq[n+1] = null;     // to avoid loiterig and help with garbage collection
        if ((n > 0) && (n == (pq.length - 1) / 4)) resize(pq.length / 2);
        assert isMinHeap();
        return min;
    }

   /***************************************************************************
    * Helper functions to restore the heap invariant.
    ***************************************************************************/
    private void swim(int k) {
        while (k > 1 && greater(k/2, k)) {
            exch(k, k/2);
            k = k/2;
        }
    }

    private void sink(int k) {
        while (2*k <= n) {
            int j = 2*k;
            if (j < n && greater(j, j+1)) j++;
            if (!greater(k, j)) break;
            exch(k, j);
            k = j;
        }
    }

   /***************************************************************************
    * Helper functions for compares and swaps.
    ***************************************************************************/
    private boolean greater(int i, int j) {
        if (comparator == null) {
            return ((Comparable<Key>) pq[i]).compareTo(pq[j]) > 0;
        }
        else {
            return comparator.compare(pq[i], pq[j]) > 0;
        }
    }

    private void exch(int i, int j) {
        Key swap = pq[i];
        pq[i] = pq[j];
        pq[j] = swap;
    }

    // is pq[1..N] a min heap?
    private boolean isMinHeap() {
        return isMinHeap(1);
    }

    // is subtree of pq[1..n] rooted at k a min heap?
    private boolean isMinHeap(int k) {
        if (k > n) return true;
        int left = 2*k;
        int right = 2*k + 1;
        if (left  <= n && greater(k, left))  return false;
        if (right <= n && greater(k, right)) return false;
        return isMinHeap(left) && isMinHeap(right);
    }

    /**
     * Returns an iterator that iterates over the keys on this priority queue
     * in ascending order.
     * <p>
     * The iterator doesn't implement {@code remove()} since it's optional.
     *
     * @return an iterator that iterates over the keys in ascending order
     */
    public Iterator<Key> iterator() {
        return new HeapIterator();
    }

    private class HeapIterator implements Iterator<Key> {
        // create a new pq
        private MinPQ<Key> copy;

        // add all items to copy of heap
        // takes linear time since already in heap order so no keys move
        public HeapIterator() {
            if (comparator == null) copy = new MinPQ<Key>(size());
            else                    copy = new MinPQ<Key>(size(), comparator);
            for (int i = 1; i <= n; i++)
                copy.insert(pq[i]);
        }
        
        public boolean hasNext()  { return !copy.isEmpty();                     }
        public void remove()      { throw new UnsupportedOperationException();  }
        public Key next() {
            if (!hasNext()) throw new NoSuchElementException();
            return copy.delMin();
        }
    }
}

四、性能分析

  • 时间复杂度
    插入操作:O(lgN)
    删除操作:O(lgN)
    建堆:O(NlgN)
  • 空间复杂度
    O(N)
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 229,001评论 6 537
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 98,786评论 3 423
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 176,986评论 0 381
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 63,204评论 1 315
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 71,964评论 6 410
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 55,354评论 1 324
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 43,410评论 3 444
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 42,554评论 0 289
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 49,106评论 1 335
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 40,918评论 3 356
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 43,093评论 1 371
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 38,648评论 5 362
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,342评论 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 34,755评论 0 28
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 36,009评论 1 289
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 51,839评论 3 395
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 48,107评论 2 375

推荐阅读更多精彩内容

  • 心情有点小阴天,为啥呢?没有完成任务。 啥任务呢?就是每天过的浑浑噩噩,没有激情没有生气,死气沉沉。 今天花了三百...
    卡卡22阅读 220评论 0 0
  • 在雪小禅的微刊里看到了她的一张照片,我一下子都被她惊艳到了。和过去看到张爱玲和三毛的照片是一样的心...
    南木晨阅读 906评论 0 1
  • 忽然什么都不想做,大脑一片空白,近日发现自己好像比较奇怪,身边的同事会对我比较不同,比如一起吃饭,对我说话比对旁人...
    笔名是不知阅读 435评论 2 1
  • 魔鬼: 你好,别害怕,我也是魔鬼。 听说最近地狱空荡荡,大家都跑到人间。 难怪,在哪都感觉好像可以嗅到潜伏在周围的...
    吴猛强专栏阅读 238评论 0 0
  • 早上7点多才起床,坐在床上发了会呆,起来吃饭。 本来要打开牛奶,忽然想起来还有好久以前买的面没吃。叫熊本拉面?(有...
    每天都想吃米饭阅读 193评论 1 1