学习Caffe(二)使用Caffe

如何使用Caffe

Caffe教程(http://robots.princeton.edu/courses/COS598/2015sp/slides/Caffe/caffe_tutorial.pdf

预备知识

Google Protocol Buffer

https://developers.google.com/protocol-buffers/docs/cpptutorial
Caffe数据的读取、运算、存储都是采用Google Protocol Buffer来进行的。PB是一种轻便、高效的结构化数据存储格式,可以用于结构化数据串行化,很适合做数据存储或 RPC 数据交换格式。它可用于通讯协议、数据存储等领域的语言无关、平台无关、可扩展的序列化结构数据格式。是一种效率和兼容性都很优秀的二进制数据传输格式,目前提供了 C++、Java、Python 三种语言的 API。Caffe采用的是C++和Python的API。

转载自https://github.com/shicai/Caffe_Manual/blob/master/ReadMe.md

初始化网络

#include "caffe/caffe.hpp"
#include <string>
#include <vector>
using namespace caffe;

char *proto = "H:\\Models\\Caffe\\deploy.prototxt"; /* 加载CaffeNet的配置 */
Phase phase = TEST; /* or TRAIN */
Caffe::set_mode(Caffe::CPU);
// Caffe::set_mode(Caffe::GPU);
// Caffe::SetDevice(0);

//! Note: 后文所有提到的net,都是这个net
boost::shared_ptr< Net<float> > net(new caffe::Net<float>(proto, phase));

加载已训练好的模型

char *model = "H:\\Models\\Caffe\\bvlc_reference_caffenet.caffemodel";    
net->CopyTrainedLayersFrom(model);

读取模型中的每层的结构配置参数

char *model = "H:\\Models\\Caffe\\bvlc_reference_caffenet.caffemodel";
NetParameter param;
ReadNetParamsFromBinaryFileOrDie(model, &param);
int num_layers = param.layer_size();
for (int i = 0; i < num_layers; ++i)
{
    // 结构配置参数:name,type,kernel size,pad,stride等
    LOG(ERROR) << "Layer " << i << ":" << param.layer(i).name() << "\t" << param.layer(i).type();
    if (param.layer(i).type() == "Convolution")
    {
        ConvolutionParameter conv_param = param.layer(i).convolution_param();
        LOG(ERROR) << "\t\tkernel size: " << conv_param.kernel_size()
            << ", pad: " << conv_param.pad()
            << ", stride: " << conv_param.stride();
    }
}

读取图像均值

char *mean_file = "H:\\Models\\Caffe\\imagenet_mean.binaryproto";
Blob<float> image_mean;
BlobProto blob_proto;
const float *mean_ptr;
unsigned int num_pixel;

bool succeed = ReadProtoFromBinaryFile(mean_file, &blob_proto);
if (succeed)
{
    image_mean.FromProto(blob_proto);
    num_pixel = image_mean.count(); /* NCHW=1x3x256x256=196608 */
    mean_ptr = (const float *) image_mean.cpu_data();
}

根据指定数据,前向传播网络

//! Note: data_ptr指向已经处理好(去均值的,符合网络输入图像的长宽和Batch Size)的数据
void caffe_forward(boost::shared_ptr< Net<float> > & net, float *data_ptr)
{
    Blob<float>* input_blobs = net->input_blobs()[0];
    switch (Caffe::mode())
    {
    case Caffe::CPU:
        memcpy(input_blobs->mutable_cpu_data(), data_ptr,
            sizeof(float) * input_blobs->count());
        break;
    case Caffe::GPU:
        cudaMemcpy(input_blobs->mutable_gpu_data(), data_ptr,
            sizeof(float) * input_blobs->count(), cudaMemcpyHostToDevice);
        break;
    default:
        LOG(FATAL) << "Unknown Caffe mode.";
    } 
    net->ForwardPrefilled();
}

根据Feature层的名字获取其在网络中的Index

//! Note: Net的Blob是指,每个层的输出数据,即Feature Maps
// char *query_blob_name = "conv1";
unsigned int get_blob_index(boost::shared_ptr< Net<float> > & net, char *query_blob_name)
{
    std::string str_query(query_blob_name);    
    vector< string > const & blob_names = net->blob_names();
    for( unsigned int i = 0; i != blob_names.size(); ++i ) 
    { 
        if( str_query == blob_names[i] ) 
        { 
            return i;
        } 
    }
    LOG(FATAL) << "Unknown blob name: " << str_query;
}

读取网络指定Feature层数据

//! Note: 根据CaffeNet的deploy.prototxt文件,该Net共有15个Blob,从data一直到prob    
char *query_blob_name = "conv1"; /* data, conv1, pool1, norm1, fc6, prob, etc */
unsigned int blob_id = get_blob_index(net, query_blob_name);

boost::shared_ptr<Blob<float> > blob = net->blobs()[blob_id];
unsigned int num_data = blob->count(); /* NCHW=10x96x55x55 */
const float *blob_ptr = (const float *) blob->cpu_data();

根据文件列表,获取特征,并存为二进制文件

详见get_features.cpp文件:

主要包括三个步骤

  • 生成文件列表,格式与训练用的类似,每行一个图像
    包括文件全路径、空格、标签(没有的话,可以置0)
  • 根据train_val或者deploy的prototxt,改写生成feat.prototxt
    主要是将输入层改为image_data层,最后加上prob和argmax(为了输出概率和Top1/5预测标签)
  • 根据指定参数,运行程序后会生成若干个二进制文件,可以用MATLAB读取数据,进行分析

根据Layer的名字获取其在网络中的Index

//! Note: Layer包括神经网络所有层,比如,CaffeNet共有23层
// char *query_layer_name = "conv1";
unsigned int get_layer_index(boost::shared_ptr< Net<float> > & net, char *query_layer_name)
{
    std::string str_query(query_layer_name);    
    vector< string > const & layer_names = net->layer_names();
    for( unsigned int i = 0; i != layer_names.size(); ++i ) 
    { 
        if( str_query == layer_names[i] ) 
        { 
            return i;
        } 
    }
    LOG(FATAL) << "Unknown layer name: " << str_query;
}

读取指定Layer的权重数据

//! Note: 不同于Net的Blob是Feature Maps,Layer的Blob是指Conv和FC等层的Weight和Bias
char *query_layer_name = "conv1";
const float *weight_ptr, *bias_ptr;
unsigned int layer_id = get_layer_index(net, query_layer_name);
boost::shared_ptr<Layer<float> > layer = net->layers()[layer_id];
std::vector<boost::shared_ptr<Blob<float>  >> blobs = layer->blobs();
if (blobs.size() > 0)
{
    weight_ptr = (const float *) blobs[0]->cpu_data();
    bias_ptr = (const float *) blobs[1]->cpu_data();
}

//! Note: 训练模式下,读取指定Layer的梯度数据,与此相似,唯一的区别是将cpu_data改为cpu_diff

修改某层的Weight数据

const float* data_ptr;          /* 指向待写入数据的指针, 源数据指针*/
float* weight_ptr = NULL;       /* 指向网络中某层权重的指针,目标数据指针*/
unsigned int data_size;         /* 待写入的数据量 */
char *layer_name = "conv1";     /* 需要修改的Layer名字 */

unsigned int layer_id = get_layer_index(net, query_layer_name);    
boost::shared_ptr<Blob<float> > blob = net->layers()[layer_id]->blobs()[0];

CHECK(data_size == blob->count());
switch (Caffe::mode())
{
case Caffe::CPU:
    weight_ptr = blob->mutable_cpu_data();
    break;
case Caffe::GPU:
    weight_ptr = blob->mutable_gpu_data();
    break;
default:
    LOG(FATAL) << "Unknown Caffe mode";
}
caffe_copy(blob->count(), data_ptr, weight_ptr);

//! Note: 训练模式下,手动修改指定Layer的梯度数据,与此相似
// mutable_cpu_data改为mutable_cpu_diff,mutable_gpu_data改为mutable_gpu_diff

保存新的模型

char* weights_file = "bvlc_reference_caffenet_new.caffemodel";
NetParameter net_param;
net->ToProto(&net_param, false);
WriteProtoToBinaryFile(net_param, weights_file);

Caffe中添加新的层

https://github.com/BVLC/caffe/wiki/Development

这里写图片描述

用预训练网络参数初始化

caffe的参数初始化是根据名字从caffemodel读取的,只要修改名字,自己想要修改的层就能随机初始化。

  • 修改名字,保留前面几层的参数,同时后面的参数设置较高的学习率,基础学习率大概0.00001左右。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352

推荐阅读更多精彩内容

  • 国家电网公司企业标准(Q/GDW)- 面向对象的用电信息数据交换协议 - 报批稿:20170802 前言: 排版 ...
    庭说阅读 10,940评论 6 13
  • Caffe GitHub页面 1. Caffe目录结构 data/用于存放下载的训练数据docs/ 帮助文档exa...
    sixfold_yuan阅读 1,669评论 3 14
  • 简介 用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者...
    保川阅读 5,953评论 1 13
  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,646评论 18 139
  • 今天周六,每周放松的日子。挑选了几个青花瓷的水仙盆,天气暖起来之后,书房的铜钱草长的很快,已经长成郁郁葱葱的一满盆...
    Rene_Yu阅读 475评论 0 0