生成对抗样本和训练经验

目前来讲,在高维空间上进行线性操作可以制作对抗样本。

对对抗样本有用的操作并不包括正则化,预训练,和模型平均,但改变到一个非线性化的如RBF网络可以提高免疫能力。

一个模型的线性化能力代表了训练的难易度,非线性化能力代表了对对抗样本的免疫能力,两者之间需要取得平衡。

BOX-constrainted L-BFGS可用于寻找对抗样本。

对抗样本人眼不能区分。

浅层softmax多回归最为脆弱。

训练对抗样本并不实用,效果甚微,因为它需要昂贵的限制性优化。

relu,lstm,maxout是偏线性化的

sigmoid相对不会太线性化

sign线虫向量攻击,快速梯度攻击对线性化网络行之有效

如果要训练防御性model,学习速率一定要小于elpsion。学习速率跨的步子越大,越不容易区分被扰动的图像。

深层网络并没有大家想象中的那么不堪一击。

目前,用混合的原样本和对抗样本同时训练会产生正则化效果,但这种效果不会强于dropout.反抗样本暴露了模型概念化决策函数的一些局限性。

训练包含权重的目标函数和FGSM,会有显著的正则化效果。在一个对比实验中,不进行对抗样本的训练进行目标函数的修改,同时加入dropout,可以减少0.94%的错误率,而进行对抗样本训练只能减少0.84%

为了拟合训练样本,我们把模型扩大,每层从240到1600节点。正常情况下这会导致过拟合,引入1.14的错误率。在训练反抗样本时,训练进程非常缓慢,验证loss基本不动,但是反抗样本loss会提升。因而训练反抗样本时,可以对反抗样本loss使用100epochs的early stopping.这样最好的错误率是0.782%

训练后对于反抗样本错误率从89.4%到17.9%,反抗训练过的模型有一定的鲁棒性,把别的模型产生的对抗样本拿过来测试,会有40.9%的错误率。

整个训练像是在进行对抗游戏,往样本加入噪声,也可以作为激活学习,启发式labeker代替了人类。

RBF网络免疫性强,但不可加入深度网络,因为优化非常难。

结论模型越容易优化越容易扰动。

线性模型需要进行对抗训练。

RBF网络具有良好的对抗性。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容