086-BigData-14MapReduce实战

上一篇:085-BigData-13MapReduce案例分析

续上

六、Hadoop企业优化

1、MapReduce 跑的慢的原因

Mapreduce 程序效率的瓶颈在于两点:
1)计算机性能
CPU、内存、磁盘健康、网络
2)I/O 操作优化
(1)数据倾斜
(2)map和reduce数设置不合理
(3)map运行时间太长,导致reduce等待过久
(4)小文件过多
(5)大量的不可分块的超大文件
(6)spill次数过多
(7)merge次数过多等。

2、MapReduce优化方法

MapReduce优化方法主要从六个方面考虑:数据输入、Map阶段、Reduce阶段、IO传输、数据倾斜问题和常用的调优参数。

3、数据输入

(1)合并小文件:在执行mr任务前将小文件进行合并,大量的小文件会产生大量的map任务,增大map任务装载次数,而任务的装载比较耗时,从而导致mr运行较慢。
(2)采用CombineTextInputFormat来作为输入,解决输入端大量小文件场景。

4、Map阶段

1)减少溢写(spill)次数:通过调整io.sort.mb及sort.spill.percent参数值,增大触发spill的内存上限,减少spill次数,从而减少磁盘IO。
2)减少合并(merge)次数:通过调整io.sort.factor参数,增大merge的文件数目,减少merge的次数,从而缩短mr处理时间。
3)在map之后,不影响业务逻辑前提下,先进行combine处理,减少 I/O。

5、Reduce阶段

1)合理设置map和reduce数:两个都不能设置太少,也不能设置太多。太少,会导致task等待,延长处理时间;太多,会导致 map、reduce任务间竞争资源,造成处理超时等错误。
2)设置map、reduce共存:调整slowstart.completedmaps参数,使map运行到一定程度后,reduce也开始运行,减少reduce的等待时间。
3)规避使用reduce:因为reduce在用于连接数据集的时候将会产生大量的网络消耗。
4)合理设置reduce端的buffer:默认情况下,数据达到一个阈值的时候,buffer中的数据就会写入磁盘,然后reduce会从磁盘中获得所有的数据。也就是说,buffer和reduce是没有直接关联的,中间多个一个写磁盘->读磁盘的过程,既然有这个弊端,那么就可以通过参数来配置,使得buffer中的一部分数据可以直接输送到reduce,从而减少IO开销:mapred.job.reduce.input.buffer.percent,默认为0.0。当值大于0的时候,会保留指定比例的内存读buffer中的数据直接拿给reduce使用。这样一来,设置buffer需要内存,读取数据需要内存,reduce计算也要内存,所以要根据作业的运行情况进行调整。

6、 IO传输

1)采用数据压缩的方式,减少网络IO的的时间。安装使用Snappy和LZO压缩编码器。
2)使用SequenceFile二进制文件。

7、数据倾斜问题

1)数据倾斜现象
数据频率倾斜——某一个区域的数据量要远远大于其他区域。
数据大小倾斜——部分记录的大小远远大于平均值。
2)如何收集倾斜数据
在reduce方法中加入记录map输出键的详细情况的功能。

public static final String MAX_VALUES = "skew.maxvalues"; 
private int maxValueThreshold; 
 
@Override
public void configure(JobConf job) { 
     maxValueThreshold = job.getInt(MAX_VALUES, 100); 
} 
@Override
public void reduce(Text key, Iterator<Text> values,
                     OutputCollector<Text, Text> output, 
                     Reporter reporter) throws IOException {
     int i = 0;
     while (values.hasNext()) {
         values.next();
         i++;
     }

     if (++i > maxValueThreshold) {
         log.info("Received " + i + " values for key " + key);
     }
}

3)减少数据倾斜的方法
方法1:抽样和范围分区
可以通过对原始数据进行抽样得到的结果集来预设分区边界值。
方法2:自定义分区
基于输出键的背景知识进行自定义分区。例如,如果map输出键的单词来源于一本书。且其中某几个专业词汇较多。那么就可以自定义分区将这这些专业词汇发送给固定的一部分reduce实例。而将其他的都发送给剩余的reduce实例。
方法3:Combine
使用Combine可以大量地减小数据倾斜。在可能的情况下,combine的目的就是聚合并精简数据。
方法4:采用Map Join,尽量避免Reduce Join。

7、常用的调优参数

1)资源相关参数
(1)以下参数是在用户自己的mr应用程序中配置就可以生效(mapred-default.xml)

image.png
image.png

(2)应该在yarn启动之前就配置在服务器的配置文件中才能生效(yarn-default.xml)

image.png

(3)shuffle性能优化的关键参数,应在yarn启动之前就配置好(mapred-default.xml)

image.png

2)容错相关参数(mapreduce性能优化)

image.png
HDFS小文件优化方法

8、HDFS小文件弊端

HDFS上每个文件都要在namenode上建立一个索引,这个索引的大小约为150byte,这样当小文件比较多的时候,就会产生很多的索引文件,一方面会大量占用namenode的内存空间,另一方面就是索引文件过大是的索引速度变慢。

9、解决方案

1)Hadoop Archive:
是一个高效地将小文件放入HDFS块中的文件存档工具,它能够将多个小文件打包成一个HAR文件,这样就减少了namenode的内存使用。
2)Sequence file:
sequence file由一系列的二进制key/value组成,如果key为文件名,value为文件内容,则可以将大批小文件合并成一个大文件。
3)CombineFileInputFormat:
CombineFileInputFormat是一种新的inputformat,用于将多个文件合并成一个单独的split,另外,它会考虑数据的存储位置。
4)开启JVM重用
对于大量小文件Job,可以开启JVM重用会减少45%运行时间。
JVM重用理解:一个map运行一个jvm,重用的话,在一个map在jvm上运行完毕后,jvm继续运行其他map。
具体设置:mapreduce.job.jvm.numtasks值在10-20之间。

七、MapReduce实战

这需要写代码,多写几个案列。

下一篇:087-BigData-15Hadoop阶段小结

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容