Spark RPC层设计概况
spark2.0的RPC框架是基于优秀的网络通信框架Netty开发的,我们先把Spark中与RPC相关的一些类的关系梳理一下,为了能够更直观地表达RPC的设计,我们先从类的设计来看,如下图所示:
从上图左半边可以看出,RPC通信主要有RpcEnv、RpcEndpoint、RpcEndpointRef这三个核心类。
RpcEndpoint是一个通信端,例如Spark集群中的Master,或Worker,都是一个RpcEndpoint。但是,如果想要与一个RpcEndpoint端进行通信,一定需要获取到该RpcEndpoint一个RpcEndpointRef,通过RpcEndpointRef与RpcEndpoint进行通信,只能通过一个RpcEnv环境对象来获取RpcEndpoint对应的RPCEndpointRef。
客户端通过RpcEndpointRef发消息,首先通过RpcEnv来处理这个消息,找到这个消息具体发给谁,然后路由给RpcEndpoint实体。Spark默认使用更加高效的NettyRpcEnv。下面对这个三个类进行详细介绍。
RpcEnv
RpcEnv是RPC的环境对象,管理着整个RpcEndpoint的生命周期,其主要功能有:根据name或uri注册endpoints、管理各种消息的处理、停止endpoints。其中RpcEnv只能通过RpcEnvFactory创建得到。
RpcEnv中有一个核心的方法:
def setupEndpoint(name: String, endpoint: RpcEndpoint): RpcEndpointRef
通过上面方法,可以注册一个RpcEndpoint到RpcEnv环境对象中,由RpcEnv来管理RpcEndpoint到RpcEndpointRef的绑定关系。在注册RpcEndpoint时,每个RpcEndpoint都需要有一个唯一的名称。
RpcEndpoint
RpcEndpoint定义了RPC通信过程中的通信端对象,除了具有管理一个RpcEndpoint生命周期的操作(constructor-> onStart -> receive* ->onStop),并给出了通信过程中一个RpcEndpoint所具有的基于事件驱动的行为(连接、断开、网络异常),实际上对于Spark框架来说RpcEndpoint主要是接收消息并处理。
RpcEndpoint中有两个核心方法:
def receive:PartialFunction[Any, Unit]={
case_ =>throw newSparkException(self +" does not implement 'receive'")
}
def receiveAndReply(context:RpcCallContext):PartialFunction[Any, Unit]={
case_ => context.sendFailure(newSparkException(self +" won't reply anything"))
}
通过上面的receive方法,接收由RpcEndpointRef.send方法发送的消息,该类消息不需要进行响应消息(Reply),而只是在RpcEndpoint端进行处理。通过receiveAndReply方法,接收由RpcEndpointRef.ask发送的消息,RpcEndpoint端处理完消息后,需要给调用RpcEndpointRef.ask的通信端响应消息。
RpcEndPointRef
RpcEndpointRef是一个对RpcEndpoint的远程引用对象,通过它可以向远程的RpcEndpoint端发送消息以进行通信。RpcEndpointRef特质的定义,代码如下所示:
private[spark] abstract class RpcEndpointRef(conf: SparkConf) extends Serializable with Logging {
private[this] val maxRetries = RpcUtils.numRetries(conf)
private[this] val retryWaitMs = RpcUtils.retryWaitMs(conf)
private[this] val defaultAskTimeout = RpcUtils.askRpcTimeout(conf)
def address: RpcAddress
def name: String
def send(message: Any): Unit
def ask[T: ClassTag](message: Any, timeout: RpcTimeout): Future[T]
def ask[T: ClassTag](message: Any): Future[T] = ask(message, defaultAskTimeout)
def askWithRetry[T: ClassTag](message: Any): T = askWithRetry(message, defaultAskTimeout)
def askWithRetry[T: ClassTag](message: Any, timeout: RpcTimeout): T = {
... ...
}
}
上面代码中,send方法发送消息后不等待响应,亦即Send-and-forget。而ask方法发送消息后需要等待通信对端给予响应,通过Future来异步获取响应结果。
Driver Spark Env中NettyRpcEnv创建
Driver Spark Env是Spark Application中Driver的运行环境,其需要创建很多组件,比如SecurityManager、rpcEnv、broadcastManager、mapOutputTracker、memoryManager、blockTransferService、blockManagerMaster、blockManager、metricsSystem等,由于本文是介绍Spark RPC机制的,估只介绍rpcEnv创建过程及服务启动过程。从NettyRpcEnv.scala的NettyRpcEnvFactory的Create方法说起
private[rpc] class NettyRpcEnvFactory extends RpcEnvFactory with Logging {
def create(config: RpcEnvConfig): RpcEnv = {
val sparkConf = config.conf
//创建序列化
val javaSerializerInstance = new JavaSerializer(sparkConf).newInstance().asInstanceOf[JavaSerializerInstance]
//new 一个NettyRpcEnv实例
val nettyEnv = new NettyRpcEnv(sparkConf, javaSerializerInstance, config.host, config.securityManager)
if (!config.clientMode) {
val startNettyRpcEnv: Int => (NettyRpcEnv, Int) = {
actualPort => nettyEnv.startServer(actualPort)
(nettyEnv, nettyEnv.address.port)
}
try {
// 根据指定的端口号和主机,启动Driver Rpc服务
Utils.startServiceOnPort(config.port, startNettyRpcEnv, sparkConf, config.name)._1
}
catch {
case NonFatal(e) =>
nettyEnv.shutdown()
throw e
}
}
nettyEnv
}
}
NettyRpcEnvFactory继承RpcEnvFactory并实现其Create方法,create方法中最重要的就是声明一个NettyRpc实例和启动服务。
1. 创建NettyRpcEnv
private[netty] class NettyRpcEnv(val conf: SparkConf, javaSerializerInstance: JavaSerializerInstance, host: String, securityManager: SecurityManager) extends RpcEnv(conf) with Logging {
// 创建transportConf
private[netty] val transportConf = SparkTransportConf.fromSparkConf(conf.clone.set("spark.rpc.io.numConnectionsPerPeer", "1"), "rpc", conf.getInt("spark.rpc.io.threads", 0))
//创建Dispatcher,主要用户消息的分发处理
private val dispatcher: Dispatcher = new Dispatcher(this)
//创建streamManager
private val streamManager = new NettyStreamManager(this)
//创建一个transportContext,主要用于创建Netty的Server和Client,其中Spark将Netty框架进行封装,以transportContext为外部切入口,与NettyRpcEndpoint等Spark代码对应,从而创建底层通信的服务端和客户端。后面会详细介绍Spark对Netty的封装。
private val transportContext = new TransportContext(transportConf, new NettyRpcHandler(dispatcher, this, streamManager))
private def createClientBootstraps(): java.util.List[TransportClientBootstrap] = {
if (securityManager.isAuthenticationEnabled()) {
java.util.Arrays.asList(new SaslClientBootstrap(transportConf, "", securityManager, securityManager.isSaslEncryptionEnabled()))
} else {
java.util.Collections.emptyList[TransportClientBootstrap]
}
}
// 声明一个clientFactory,用户创建通信的客户端
private val clientFactory = transportContext.createClientFactory(createClientBootstraps())
/**
* A separate client factory for file downloads. This avoids using the same RPC handler as
* the main RPC context, so that events caused by these clients are kept isolated from the
* main RPC traffic.
*
* It also allows for different configuration of certain properties, such as the number of
* connections per peer.
*/
@volatile private var fileDownloadFactory: TransportClientFactory = _
//创建一个netty-rpc-env-timeout的守护线程
val timeoutScheduler = ThreadUtils.newDaemonSingleThreadScheduledExecutor("netty-rpc-env-timeout")
// Because TransportClientFactory.createClient is blocking, we need to run it in this thread pool
// to implement non-blocking send/ask.
// TODO: a non-blocking TransportClientFactory.createClient in future
private[netty] val clientConnectionExecutor = ThreadUtils.newDaemonCachedThreadPool( "netty-rpc-connection", conf.getInt("spark.rpc.connect.threads", 64))
@volatile private var server: TransportServer = _
private val stopped = new AtomicBoolean(false)
/**
* A map for [[RpcAddress]] and [[Outbox]]. When we are connecting to a remote [[RpcAddress]],
* we just put messages to its [[Outbox]] to implement a non-blocking `send` method.
*/
private val outboxes = new ConcurrentHashMap[RpcAddress, Outbox]()
/**
* Remove the address's Outbox and stop it.
*/
private[netty] def removeOutbox(address: RpcAddress): Unit = {
val outbox = outboxes.remove(address)
if (outbox != null) {
outbox.stop()
}
}
//根据指定端口,启动transportServer
def startServer(port: Int): Unit = {
val bootstraps: java.util.List[TransportServerBootstrap] =
if(securityManager.isAuthenticationEnabled()) {
java.util.Arrays.asList(new SaslServerBootstrap(transportConf, securityManager))
} else {
java.util.Collections.emptyList()
}
//通过transportContext启动通信底层的服务端
server = transportContext.createServer(host, port, bootstraps)
//注册一个RpcEndpointVerifier,对Server进行验证
dispatcher.registerRpcEndpoint(RpcEndpointVerifier.NAME, new RpcEndpointVerifier(this, dispatcher))
}
@Nullable override lazy val address: RpcAddress = {
if (server != null)
RpcAddress(host, server.getPort())
else
null
}
//重写rpcEnv的setupEndpoint方法,用户rpcEndpoint在rpcEnv上进行注册
override def setupEndpoint(name: String, endpoint: RpcEndpoint): RpcEndpointRef = {
dispatcher.registerRpcEndpoint(name, endpoint)
}
def asyncSetupEndpointRefByURI(uri: String): Future[RpcEndpointRef] = {
val addr = RpcEndpointAddress(uri)
val endpointRef = new NettyRpcEndpointRef(conf, addr, this)
val verifier = new NettyRpcEndpointRef(conf, RpcEndpointAddress(addr.rpcAddress, RpcEndpointVerifier.NAME), this)
verifier.ask[Boolean](RpcEndpointVerifier.CheckExistence(endpointRef.name)).flatMap { find => if (find) { Future.successful(endpointRef) } else { Future.failed(new RpcEndpointNotFoundException(uri)) } }(ThreadUtils.sameThread)
}
override def stop(endpointRef: RpcEndpointRef): Unit = {
require(endpointRef.isInstanceOf[NettyRpcEndpointRef])
dispatcher.stop(endpointRef)
}
private def postToOutbox(receiver: NettyRpcEndpointRef, message: OutboxMessage): Unit = {
if (receiver.client != null) {
message.sendWith(receiver.client)
} else {
require(receiver.address != null, "Cannot send message to client endpoint with no listen address.")
val targetOutbox = {
val outbox = outboxes.get(receiver.address)
if (outbox == null) {
val newOutbox = new Outbox(this, receiver.address)
val oldOutbox = outboxes.putIfAbsent(receiver.address, newOutbox)
if (oldOutbox == null) {
newOutbox
} else {
oldOutbox
}
} else {
outbox
}
}
if (stopped.get) {
// It's possible that we put `targetOutbox` after stopping. So we need to clean it.
outboxes.remove(receiver.address)
targetOutbox.stop()
} else {
targetOutbox.send(message)
}
}
}
private[netty] def send(message: RequestMessage): Unit = {
val remoteAddr = message.receiver.address
if (remoteAddr == address) {
// Message to a local RPC endpoint.
try {
dispatcher.postOneWayMessage(message)
}
catch {
case e: RpcEnvStoppedException => logWarning(e.getMessage)
}
} else {
// Message to a remote RPC endpoint.
postToOutbox(message.receiver, OneWayOutboxMessage(serialize(message)))
}
}
private[netty] def createClient(address: RpcAddress): TransportClient = { clientFactory.createClient(address.host, address.port) }
private[netty] def ask[T: ClassTag](message: RequestMessage, timeout: RpcTimeout): Future[T] = {
val promise = Promise[Any]()
val remoteAddr = message.receiver.address
def onFailure(e: Throwable): Unit = {
if (!promise.tryFailure(e)) {
logWarning(s"Ignored failure: $e")
}
}
def onSuccess(reply: Any): Unit = reply match {
case RpcFailure(e) => onFailure(e)
case rpcReply => if (!promise.trySuccess(rpcReply)) { logWarning(s"Ignored message: $reply") }
}
try {
if (remoteAddr == address) {
val p = Promise[Any]()
p.future.onComplete {
case Success(response) => onSuccess(response)
case Failure(e) => onFailure(e)
}(ThreadUtils.sameThread)
dispatcher.postLocalMessage(message, p)
} else {
val rpcMessage = RpcOutboxMessage(serialize(message), onFailure, (client, response) => onSuccess(deserialize[Any](client, response)))
postToOutbox(message.receiver, rpcMessage)
promise.future.onFailure {
case _: TimeoutException => rpcMessage.onTimeout()
case _ =>
}(ThreadUtils.sameThread)
}
val timeoutCancelable = timeoutScheduler.schedule(new Runnable {
override def run(): Unit = {
onFailure(new TimeoutException(s"Cannot receive any reply in ${timeout.duration}"))
}
}, timeout.duration.toNanos, TimeUnit.NANOSECONDS)
promise.future.onComplete { v =>
timeoutCancelable.cancel(true)
}(ThreadUtils.sameThread)
} catch {
case NonFatal(e) => onFailure(e)
}
promise.future.mapTo[T].recover(timeout.addMessageIfTimeout)(ThreadUtils.sameThread)
}
private[netty] def serialize(content: Any): ByteBuffer = {
javaSerializerInstance.serialize(content)
}
private[netty] def deserialize[T: ClassTag](client: TransportClient, bytes: ByteBuffer): T = {
NettyRpcEnv.currentClient.withValue(client) {
deserialize {
() => javaSerializerInstance.deserialize[T](bytes)
}
}
}
override def endpointRef(endpoint: RpcEndpoint): RpcEndpointRef = {
dispatcher.getRpcEndpointRef(endpoint)
}
override def shutdown(): Unit = {
cleanup()
}
override def awaitTermination(): Unit = {
dispatcher.awaitTermination()
}
private def cleanup(): Unit = {
if (!stopped.compareAndSet(false, true)) {
return
}
val iter = outboxes.values().iterator()
while (iter.hasNext()) {
val outbox = iter.next()
outboxes.remove(outbox.address)
outbox.stop()
}
if (timeoutScheduler != null) {
timeoutScheduler.shutdownNow()
}
if (dispatcher != null) {
dispatcher.stop()
}
if (server != null) {
server.close()
}
if (clientFactory != null) {
clientFactory.close()
}
if (clientConnectionExecutor != null) {
clientConnectionExecutor.shutdownNow()
}
if (fileDownloadFactory != null) {
fileDownloadFactory.close()
}
}
override def deserialize[T](deserializationAction: () => T): T = {
NettyRpcEnv.currentEnv.withValue(this) {
deserializationAction()
}
}
override def fileServer: RpcEnvFileServer = streamManager
override def openChannel(uri: String): ReadableByteChannel = {
val parsedUri = new URI(uri)
require(parsedUri.getHost() != null, "Host name must be defined.")
require(parsedUri.getPort() > 0, "Port must be defined.")
require(parsedUri.getPath() != null && parsedUri.getPath().nonEmpty, "Path must be defined.")
val pipe = Pipe.open()
val source = new FileDownloadChannel(pipe.source())
try {
val client = downloadClient(parsedUri.getHost(), parsedUri.getPort())
val callback = new FileDownloadCallback(pipe.sink(), source, client)
client.stream(parsedUri.getPath(), callback)
} catch {
case e: Exception =>
pipe.sink().close()
source.close()
throw e
}
source
}
private def downloadClient(host: String, port: Int): TransportClient = {
if (fileDownloadFactory == null)
synchronized {
if (fileDownloadFactory == null) {
val module = "files"
val prefix = "spark.rpc.io."
val clone = conf.clone()
// Copy any RPC configuration that is not overridden in the spark.files namespace.
conf.getAll.foreach {
case (key, value) =>
if (key.startsWith(prefix)) {
val opt = key.substring(prefix.length())
clone.setIfMissing(s"spark.$module.io.$opt", value)
}
}
val ioThreads = clone.getInt("spark.files.io.threads", 1)
val downloadConf = SparkTransportConf.fromSparkConf(clone, module, ioThreads)
val downloadContext = new TransportContext(downloadConf, new NoOpRpcHandler(), true)
fileDownloadFactory = downloadContext.createClientFactory(createClientBootstraps())
}
}
fileDownloadFactory.createClient(host, port)
}
private class FileDownloadChannel(source: ReadableByteChannel) extends ReadableByteChannel {
@volatile private var error: Throwable = _
def setError(e: Throwable): Unit = { error = e source.close() }
override def read(dst: ByteBuffer): Int = {
Try(source.read(dst)) match {
case Success(bytesRead) => bytesRead
case Failure(readErr) =>
if (error != null) {
throw error
} else {
throw readErr
}
}
}
override def close(): Unit = source.close()
override def isOpen(): Boolean = source.isOpen()
}
private class FileDownloadCallback(sink: WritableByteChannel, source: FileDownloadChannel, client: TransportClient) extends StreamCallback {
override def onData(streamId: String, buf: ByteBuffer): Unit = {
while (buf.remaining() > 0) {
sink.write(buf)
}
}
override def onComplete(streamId: String): Unit = {
sink.close()
}
override def onFailure(streamId: String, cause: Throwable): Unit = {
logDebug(s"Error downloading stream $streamId.", cause)
source.setError(cause)
sink.close()
}
}
}
新创建的NettyRpcEnv主要用于Endpoint的注册、启动transportServer、获得RPCEndpointRef、创建客户端等等;其主要成员有dispatcher、transportContext。
1.1 Dispatcher介绍
Dispatcher的主要作用是保存注册的RpcEndpoint、分发相应的Message到RpcEndPoint中进行处理。
private[netty] class Dispatcher(nettyEnv: NettyRpcEnv) extends Logging {
// Dispatcher的内部类,主要是声明一个
private class EndpointData(val name: String, val endpoint: RpcEndpoint, val ref: NettyRpcEndpointRef) {
val inbox = new Inbox(ref, endpoint)
}
// 维护一个HaskMap,保存Name与EndpointData的关系
private val endpoints = new ConcurrentHashMap[String, EndpointData]
// 维护一个HaskMap,保存RpcEndpoint与RpcEndpointRef的关系
private val endpointRefs = new ConcurrentHashMap[RpcEndpoint, RpcEndpointRef]
// Track the receivers whose inboxes may contain messages.
//维护一个BlockingQueue的队列,用于保存拥有消息的EndpointData,注册Endpoint、
//发送消息时、停止RpcEnv时、取消注册的Endpoint时,会在receivers中添加相应的EndpointData
private val receivers = new LinkedBlockingQueue[EndpointData]
/**
* True if the dispatcher has been stopped. Once stopped, all messages posted will be bounced immediately.
*/
@GuardedBy("this") private var stopped = false
// 根据Name和RPCEndpoint,在RpcEnv上进行注册
def registerRpcEndpoint(name: String, endpoint: RpcEndpoint): NettyRpcEndpointRef = {
//根据NettyEnv的address和参数Name,创建RpcEndpointAddress
val addr = RpcEndpointAddress(nettyEnv.address, name)
//创建对应的NettyRpcEndpointRef
val endpointRef = new NettyRpcEndpointRef(nettyEnv.conf, addr, nettyEnv)
synchronized {
if (stopped) {
throw new IllegalStateException("RpcEnv has been stopped")
}
//新建一个EndpointData,里面主要包含一个inbox成员,后面会讲到。
//将新创建的EndpointData和对应的Name添加到endpoints中
if (endpoints.putIfAbsent(name, new EndpointData(name, endpoint, endpointRef)) != null) {
throw new IllegalArgumentException(s"There is already an RpcEndpoint called $name")
}
val data = endpoints.get(name)
//将endpoint和对应的endpointRef添加到endpointRefs中
endpointRefs.put(data.endpoint, data.ref)
//在receivers中添加新创建的endpointData
receivers.offer(data)
// for the OnStart message
}
//返回对应的EndpointRef
endpointRef
}
//根据endpoint获取对应的endpointRef
def getRpcEndpointRef(endpoint: RpcEndpoint): RpcEndpointRef = endpointRefs.get(endpoint)
//从endpointRefs中移除对应的endpoint
def removeRpcEndpointRef(endpoint: RpcEndpoint): Unit = endpointRefs.remove(endpoint)
// Should be idempotent private
// 根据Name,取消其在NettyRpcEnv中注册的endpoint
def unregisterRpcEndpoint(name: String): Unit = {
//从endpoints中移除对应的endpointData
val data = endpoints.remove(name)
if (data != null) {
//调用endpointData中inbox的stop方法,停止endpointData
data.inbox.stop()
//将endpointData添加到receivers中,以便守护线程能执行endpointData.inbox的message
receivers.offer(data)
// for the OnStop message
}
// Don't clean `endpointRefs` here because it's possible that some messages are being processed
// now and they can use `getRpcEndpointRef`. So `endpointRefs` will be cleaned in Inbox via
// `removeRpcEndpointRef`.
}
def stop(rpcEndpointRef: RpcEndpointRef): Unit = {
synchronized {
if (stopped) {
// This endpoint will be stopped by Dispatcher.stop() method.
return
}
unregisterRpcEndpoint(rpcEndpointRef.name)
}
}
/**
* Send a message to all registered [[RpcEndpoint]]s in this process.
*
* This can be used to make network events known to all end points (e.g. "a new node connected").
*/
//向所有已经注册的RpcEndpoint发送消息
def postToAll(message: InboxMessage): Unit = {
val iter = endpoints.keySet().iterator()
while (iter.hasNext) {
val name = iter.next
postMessage(name, message, (e) => logWarning(s"Message $message dropped. ${e.getMessage}"))
}
}
/** Posts a message sent by a remote endpoint. */
//发布一个由远端endpoint发送的消息
def postRemoteMessage(message: RequestMessage, callback: RpcResponseCallback): Unit = {
val rpcCallContext = new RemoteNettyRpcCallContext(nettyEnv, callback, message.senderAddress)
val rpcMessage = RpcMessage(message.senderAddress, message.content, rpcCallContext)
postMessage(message.receiver.name, rpcMessage, (e) => callback.onFailure(e))
}
/** Posts a message sent by a local endpoint. */
//发布一个由本地endpoint发送的消息
def postLocalMessage(message: RequestMessage, p: Promise[Any]): Unit = {
val rpcCallContext = new LocalNettyRpcCallContext(message.senderAddress, p)
val rpcMessage = RpcMessage(message.senderAddress, message.content, rpcCallContext)
postMessage(message.receiver.name, rpcMessage, (e) => p.tryFailure(e))
}
/** Posts a one-way message. */
def postOneWayMessage(message: RequestMessage): Unit = {
postMessage(message.receiver.name, OneWayMessage(message.senderAddress, message.content), (e) => throw e)
}
/**
* Posts a message to a specific endpoint.
*
* @param endpointName name of the endpoint.
* @param message the message to post
* @param callbackIfStopped callback function if the endpoint is stopped.
*/
//将消息发送给特定的endpoint进行处理,参数1:endpoint的名字,参数2:消息,参数3:当endpoint停止时的回调函数
private def postMessage(endpointName: String, message: InboxMessage, callbackIfStopped: (Exception) => Unit): Unit = {
val error = synchronized {
// 根据endpointName获得对应的endpointData
val data = endpoints.get(endpointName)
if (stopped) {
Some(new RpcEnvStoppedException())
} else if (data == null) {
Some(new SparkException(s"Could not find $endpointName."))
} else {
//将Message添加到该endpointData的inbox的message中
data.inbox.post(message)
//将endpointData添加到receivers中
receivers.offer(data)
None
}
}
// We don't need to call `onStop` in the `synchronized` block
error.foreach(callbackIfStopped)
}
def stop(): Unit = {
synchronized {
if (stopped) {
return
}
stopped = true
}
// Stop all endpoints. This will queue all endpoints for processing by the message loops.
endpoints.keySet().asScala.foreach(unregisterRpcEndpoint)
// Enqueue a message that tells the message loops to stop. receivers.offer(PoisonPill)
threadpool.shutdown()
}
def awaitTermination(): Unit = {
threadpool.awaitTermination(Long.MaxValue, TimeUnit.MILLISECONDS)
}
/**
* Return if the endpoint exists
*/
//判断endpoints中是否包含对应的endpointName
def verify(name: String): Boolean = { endpoints.containsKey(name) }
/** Thread pool used for dispatching messages. */
//创建一个线程组,用于分发消息
private val threadpool: ThreadPoolExecutor = {
//根据配置项,获的线程组中线程个数
val numThreads = nettyEnv.conf.getInt("spark.rpc.netty.dispatcher.numThreads", math.max(2, Runtime.getRuntime.availableProcessors()))
//创建线程组
val pool = ThreadUtils.newDaemonFixedThreadPool(numThreads, "dispatcher-event-loop")
//创建多线程,执行相应的MessageLoop
for (i <- 0 until numThreads) {
pool.execute(new MessageLoop)
}
pool
}
/** Message loop used for dispatching messages. */
//声明一个MessageLoop继承Runnable
private class MessageLoop extends Runnable {
override def run(): Unit = {
try {
while (true) {
try {
//从receivers中获得一个endpointData,由于receivers是LinkBlockingQueue,所以如果receivers中没有元素时,该线程会阻塞
val data = receivers.take()
//获取的元素如果是PoisonPill,将停止该线程,同时 将PoisonPill继续放回receivers中,以便停止所有线程
if (data == PoisonPill) {
// Put PoisonPill back so that other MessageLoops can see it.
receivers.offer(PoisonPill)
return
}
//调用rpcEndpointData中inbox的process方法,处理响应RpcEndpointData中的Message
data.inbox.process(Dispatcher.this)
} catch {
case NonFatal(e) => logError(e.getMessage, e)
}
}
} catch {
case ie: InterruptedException => // exit
}
}
}
/** A poison endpoint that indicates MessageLoop should exit its message loop. */
private val PoisonPill = new EndpointData(null, null, null)}
根据上面的代码可以看出,Dispatcher在进行Message分发到相应的Endpoint进行处理时,实际上是将Message分发到endpointData中进行处理了,而EndpointData类中最重要的成员就是inbox,下面介绍Inbox。
1.2 Inbox
private[netty] class Inbox(val endpointRef: NettyRpcEndpointRef, val endpoint: RpcEndpoint) extends Logging {
inbox =>
// Give this an alias so we can use it more clearly in closures.
// 声明一个InboxMessage类型的LinkedList,命名为message
@GuardedBy("this") protected val messages = new java.util.LinkedList[InboxMessage]()
/** True if the inbox (and its associated endpoint) is stopped. */
@GuardedBy("this") private var stopped = false
/** Allow multiple threads to process messages at the same time. */
//允许多个线程同时处理message
@GuardedBy("this") private var enableConcurrent = false
/** The number of threads processing messages for this inbox. */
//对当前处理message的进程的计数
@GuardedBy("this") private var numActiveThreads = 0
// OnStart should be the first message to process
//最开始在声明的时候就将OnStart消息添加到message中
inbox.synchronized {
messages.add(OnStart)
}
/**
* Process stored messages.
*/
//处理消息
def process(dispatcher: Dispatcher): Unit = {
var message: InboxMessage = null
inbox.synchronized {
if (!enableConcurrent && numActiveThreads != 0) {
return
}
//获取list中头部的第一个message
message = messages.poll()
//去过message不为Null,就将numActiveThreads加1
if (message != null) {
numActiveThreads += 1
} else {
return
}
}
//对Message进行匹配,然后执行
while (true) {
safelyCall(endpoint) {
message match {
case RpcMessage(_sender, content, context) =>
try {
endpoint.receiveAndReply(context).applyOrElse[Any, Unit](content, { msg =>
throw new SparkException(s"Unsupported message $message from ${_sender}")
})
} catch {
case NonFatal(e) =>
context.sendFailure(e)
// Throw the exception -- this exception will be caught by the safelyCall function.
// The endpoint's onError function will be called.
throw e
}
case OneWayMessage(_sender, content) =>
endpoint.receive.applyOrElse[Any, Unit](content, { msg =>
throw new SparkException(s"Unsupported message $message from ${_sender}")
})
case OnStart =>
endpoint.onStart()
if (!endpoint.isInstanceOf[ThreadSafeRpcEndpoint]) {
inbox.synchronized {
if (!stopped) {
enableConcurrent = true
}
}
}
case OnStop =>
val activeThreads = inbox.synchronized { inbox.numActiveThreads }
assert(activeThreads == 1,
s"There should be only a single active thread but found $activeThreads threads.")
dispatcher.removeRpcEndpointRef(endpoint)
endpoint.onStop()
assert(isEmpty, "OnStop should be the last message")
case RemoteProcessConnected(remoteAddress) =>
endpoint.onConnected(remoteAddress)
case RemoteProcessDisconnected(remoteAddress) =>
endpoint.onDisconnected(remoteAddress)
case RemoteProcessConnectionError(cause, remoteAddress) =>
endpoint.onNetworkError(cause, remoteAddress)
}
}
inbox.synchronized {
// "enableConcurrent" will be set to false after `onStop` is called, so we should check it every time.
if (!enableConcurrent && numActiveThreads != 1) {
// If we are not the only one worker, exit
numActiveThreads -= 1
return
}
//获取message中的下一个元素,继续进行匹配执行
message = messages.poll()
if (message == null) {
numActiveThreads -= 1
return
}
}
}
}
//将message消息添加到messages列表中
def post(message: InboxMessage): Unit = inbox.synchronized {
//如果inbox已经停止,就将OnStop添加到messages中
if (stopped) {
// We already put "OnStop" into "messages", so we should drop further messages
onDrop(message)
} else {
messages.add(message)
false
}
}
def stop(): Unit = inbox.synchronized {
// The following codes should be in `synchronized` so that we can make sure "OnStop" is the last
// message
if (!stopped) {
// We should disable concurrent here. Then when RpcEndpoint.onStop is called, it's the only
// thread that is processing messages. So `RpcEndpoint.onStop` can release its resources
// safely.
enableConcurrent = false
stopped = true
messages.add(OnStop)
// Note: The concurrent events in messages will be processed one by one.
}
}
//判断messages是否为空
def isEmpty: Boolean = inbox.synchronized { messages.isEmpty }
/**
* Called when we are dropping a message. Test cases override this to test message dropping.
* Exposed for testing.
*/
protected def onDrop(message: InboxMessage): Unit = {
logWarning(s"Drop $message because $endpointRef is stopped")
}
/**
* Calls action closure, and calls the endpoint's onError function in the case of exceptions.
*/
private def safelyCall(endpoint: RpcEndpoint)(action: => Unit): Unit = {
try action catch {
case NonFatal(e) =>
try endpoint.onError(e) catch {
case NonFatal(ee) => logError(s"Ignoring error", ee)
}
}
}
}
至此,NettyRpcEnv中的Dispatcher已经讲完了,主要流程是:
- 创建Dispatcher
- 声明线程组,并监控receivers是否有新的EndpointData
- 如果有消息,并且不为PoisonPill,调用相应EndpointData的Inbox的process方法进行消息处理
1). 依次从相应的EndpointData的inbox的messages中获取第一个元素
2). 匹配消息,并调用对应的endpoint的相应方法进行处理 - 如果没有消息,则阻塞等待
- 如果有消息,但是为PoisonPill,则将PoisonPill继续添加到receivers中,然后停止该线程
- 如果有消息,并且不为PoisonPill,调用相应EndpointData的Inbox的process方法进行消息处理
- 根据name和endpoint,在NettyRpcEnv进行注册
- 根据nettyEnv.conf、RpcEndpointAddress和nettyEnv创建对应的NettyRpcEndpointRef
- 根据name、endpoint、endpointRef创建新的EndpointData
- 将name -> EndpointData添加到endpoints中
- 将endpoint -> endpointRef添加到endpointRefs中
- 将新建的EndpointData添加到receivers中
- 将InboxMessage消息分发到相应的EndpointData中进行处理
- 根据Name获取EndpointData
- 将Message添加到EndpointData的Inbox的messages中
- 将EndpointData添加到receivers中
接下来重点介绍下RpcEndpointRef的生成方法,根据name和rpcendpoint在NettyRpcEnv注册时,首先会根据name和NettyEnv的address创建RpcEndpointAddress,然后再根据RpcEndpointAddress、NettyEnv.conf和NettyEnv创建一个相应的NettyRpcEndpointRef,也就是说NettyRpcEndpointRef的生成与实际的RPCEndpoint并没有什么直接联系,只是在NettyRpcEnv中依据某个Name生成一个NettyRpcEndpointRef,然后客户端通过NettyRpcEndpotinRef发送消息时,NettyRpcEnv会根据消息中的name,将消息发送给对应的NettyRpcEndpoint进行相应消息处理。
1.3 NettyRpcEndpointRef
private[netty] class NettyRpcEndpointRef( @transient private val conf: SparkConf, endpointAddress: RpcEndpointAddress, @transient @volatile private var nettyEnv: NettyRpcEnv) extends RpcEndpointRef(conf) with Serializable with Logging {
//声明一个transportClient
@transient @volatile var client: TransportClient = _
//根据endpointAddress获得NettyRpcEnv的host地址
private val _address = if (endpointAddress.rpcAddress != null) endpointAddress else null
//声明一个_name变量并赋值为endpointAddress的Name
private val _name = endpointAddress.name
override def address: RpcAddress = if (_address != null) _address.rpcAddress else null
//读对象
private def readObject(in: ObjectInputStream): Unit = {
in.defaultReadObject()
nettyEnv = NettyRpcEnv.currentEnv.value
client = NettyRpcEnv.currentClient.value
}
//写对象
private def writeObject(out: ObjectOutputStream): Unit = {
out.defaultWriteObject()
}
override def name: String = _name
//重写RPCEndpointRef的ask方法
override def ask[T: ClassTag](message: Any, timeout: RpcTimeout): Future[T] = {
nettyEnv.ask(RequestMessage(nettyEnv.address, this, message), timeout)
}
//重写RPCEndpointRef的send方法
override def send(message: Any): Unit = {
require(message != null, "Message is null")
nettyEnv.send(RequestMessage(nettyEnv.address, this, message))
}
override def toString: String = s"NettyRpcEndpointRef(${_address})"
def toURI: URI = new URI(_address.toString)
final override def equals(that: Any): Boolean = that match {
case other: NettyRpcEndpointRef => _address == other._address
case _ => false
}
final override def hashCode(): Int = if (_address == null) 0 else _address.hashCode()}
至此,Spark RPC通信模块中的NettyRpcEnv、NettyRpcEndpoint、NettyRpcEndpointRef已经全部梳理完成。