直接上代码
#####################################构建网络模型以及训练部分##################
coding:utf-8
fromgen_captchaimportgen_captcha_text_and_image
fromgen_captchaimportnumber
fromgen_captchaimportalphabet
fromgen_captchaimportALPHABET
importmatplotlib.pyplotasplt
fromPILimportImage
importnumpyasnp
importtensorflowastf
text, image = gen_captcha_text_and_image()
print("验证码图像channel:", image.shape)# (60, 160, 3)
# 图像大小
IMAGE_HEIGHT =60
IMAGE_WIDTH =160
MAX_CAPTCHA =len(text)
print("验证码文本最长字符数", MAX_CAPTCHA)# 验证码最长4字符; 我全部固定为4,可以不固定. 如果验证码长度小于4,用'_'补齐
# 把彩色图像转为灰度图像(色彩对识别验证码没有什么用)
defconvert2gray(img):
iflen(img.shape) >2:
gray = np.mean(img, -1)
# 上面的转法较快,正规转法如下
# r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
# gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
returngray
else:
returnimg
"""
cnn在图像大小是2的倍数时性能最高, 如果你用的图像大小不是2的倍数,可以在图像边缘补无用像素。
np.pad(image【,((2,3),(2,2)), 'constant', constant_values=(255,)) # 在图像上补2行,下补3行,左补2行,右补2行
"""
#############@@@@@@@@@@@@@@@@
#文本转向量
char_set = number + alphabet + ALPHABET + ['_']
CHAR_SET_LEN =len(char_set)
deftext2vec(text):
text_len =len(text)
iftext_len > MAX_CAPTCHA:
raiseValueError('验证码最长四个字符')
##########@@@@@@@@@@@@@@@@
# 文本转向量
char_set = number + alphabet + ALPHABET + ['_']# 如果验证码长度小于4, '_'用来补齐
CHAR_SET_LEN =len(char_set)
deftext2vec(text):
text_len =len(text)
iftext_len > MAX_CAPTCHA:
raiseValueError('验证码最长4个字符')
vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN)
defchar2pos(c):
ifc =='_':
k =62
returnk
k =ord(c)-48
ifk >9:
k =ord(c) -55
ifk >35:
k =ord(c) -61
ifk >61:
raiseValueError('No Map')
returnk
fori, cinenumerate(text):
idx = i * CHAR_SET_LEN + char2pos(c)
vector[idx] =1
returnvector
# 向量转回文本
defvec2text(vec):
char_pos = vec.nonzero()[0]
text=[]
fori, cinenumerate(char_pos):
char_at_pos= i#c/63
char_idx = c % CHAR_SET_LEN
ifchar_idx <10:
char_code = char_idx +ord('0')
elifchar_idx <36:
char_code = char_idx -10+ord('A')
elifchar_idx <62:
char_code = char_idx-36+ord('a')
elifchar_idx ==62:
char_code =ord('_')
else:
raiseValueError('error')
text.append(chr(char_code))
return"".join(text)
"""
#向量(大小MAX_CAPTCHA*CHAR_SET_LEN)用0,1编码 每63个编码一个字符,这样顺利有,字符也有
vec = text2vec("F5Sd")
text = vec2text(vec)
print(text) # F5Sd
vec = text2vec("SFd5")
text = vec2text(vec)
print(text) # SFd5
"""
#生成一个训练batch
defget_next_batch(batch_size=128):
batch_x = np.zeros([batch_size, IMAGE_HEIGHT*IMAGE_WIDTH])
batch_y = np.zeros([batch_size, MAX_CAPTCHA*CHAR_SET_LEN])
# 有时生成图像大小不是(60, 160, 3)
defwrap_gen_captcha_text_and_image():
whileTrue:
text, image = gen_captcha_text_and_image()
ifimage.shape == (60,160,3):
returntext, image
foriinrange(batch_size):
text, image = wrap_gen_captcha_text_and_image()
image = convert2gray(image)
batch_x[i,:] = image.flatten() /255# (image.flatten()-128)/128 mean为0
batch_y[i,:] = text2vec(text)
returnbatch_x, batch_y
####################################################################
X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT*IMAGE_WIDTH])
Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA*CHAR_SET_LEN])
keep_prob = tf.placeholder(tf.float32)# dropout
# 定义CNN
defcrack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
x = tf.reshape(X,shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH,1])
#w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #
#w_c2_alpha = np.sqrt(2.0/(3*3*32))
#w_c3_alpha = np.sqrt(2.0/(3*3*64))
#w_d1_alpha = np.sqrt(2.0/(8*32*64))
#out_alpha = np.sqrt(2.0/1024)
# 3 conv layer
w_c1 = tf.Variable(w_alpha*tf.random_normal([3,3,1,32]))
b_c1 = tf.Variable(b_alpha*tf.random_normal([32]))
conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1,strides=[1,1,1,1],padding='SAME'), b_c1))
conv1 = tf.nn.max_pool(conv1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
conv1 = tf.nn.dropout(conv1, keep_prob)
w_c2 = tf.Variable(w_alpha*tf.random_normal([3,3,32,64]))
b_c2 = tf.Variable(b_alpha*tf.random_normal([64]))
conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2,strides=[1,1,1,1],padding='SAME'), b_c2))
conv2 = tf.nn.max_pool(conv2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
conv2 = tf.nn.dropout(conv2, keep_prob)
w_c3 = tf.Variable(w_alpha*tf.random_normal([3,3,64,64]))
b_c3 = tf.Variable(b_alpha*tf.random_normal([64]))
conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3,strides=[1,1,1,1],padding='SAME'), b_c3))
conv3 = tf.nn.max_pool(conv3,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
conv3 = tf.nn.dropout(conv3, keep_prob)
# Fully connected layer
w_d = tf.Variable(w_alpha*tf.random_normal([8*20*64,1024]))
b_d = tf.Variable(b_alpha*tf.random_normal([1024]))
dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
dense = tf.nn.dropout(dense, keep_prob)
w_out = tf.Variable(w_alpha*tf.random_normal([1024, MAX_CAPTCHA*CHAR_SET_LEN]))
b_out = tf.Variable(b_alpha*tf.random_normal([MAX_CAPTCHA*CHAR_SET_LEN]))
out = tf.add(tf.matmul(dense, w_out), b_out)
#out = tf.nn.softmax(out)
returnout
# 训练
deftrain_crack_captcha_cnn():
output = crack_captcha_cnn()
# loss
#loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y))
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output,labels=Y))
# 最后一层用来分类的softmax和sigmoid有什么不同?
# optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
max_idx_p = tf.argmax(predict,2)
max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]),2)
correct_pred = tf.equal(max_idx_p, max_idx_l)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
saver = tf.train.Saver()
withtf.Session()assess:
sess.run(tf.global_variables_initializer())
step =0
whileTrue:
batch_x, batch_y = get_next_batch(64)
_, loss_ = sess.run([optimizer, loss],feed_dict={X: batch_x, Y: batch_y, keep_prob:0.75})
print(step, loss_)
# 每100 step计算一次准确率
ifstep %10==0:
batch_x_test, batch_y_test = get_next_batch(100)
acc = sess.run(accuracy,feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob:1.})
print(step, acc)
# 如果准确率大于50%,保存模型,完成训练
ifacc >0.98:
saver.save(sess,"./crack_capcha.model",global_step=step)
break
step +=1
defcrack_captcha(captcha_image):
output = crack_captcha_cnn()
saver = tf.train.Saver()
withtf.Session()assess:
saver.restore(sess, tf.train.latest_checkpoint('.'))
predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]),2)
text_list = sess.run(predict,feed_dict={X: [captcha_image], keep_prob:1})
text = text_list[0].tolist()
vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN)
i =0
fornintext:
vector[i*CHAR_SET_LEN + n] =1
i +=1
returnvec2text(vector)
if__name__ =='__main__':
text, image = gen_captcha_text_and_image()
img111 = image
image = convert2gray(image)
image = image.flatten() /255
predict_text = crack_captcha(image)
print("正确: {} 预测: {}".format(text, predict_text))
plt.imshow(img111)
plt.show()
# train_crack_captcha_cnn()
#####################################生成验证码部分##################
#coding=utf-8
fromcaptcha.imageimportImageCaptcha# pip install captcha
importnumpyasnp
importmatplotlib.pyplotasplt
fromPILimportImage
importrandom
importmatplotlib.imageasmpimg
importtensorflowastf
importcv2
# 验证码中的字符, 就不用汉字了
number = ['0','1','2','3','4','5','6','7','8','9']
alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u',
'v','w','x','y','z']
ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U',
'V','W','X','Y','Z']
'''
number=['0','1','2','3','4','5','6','7','8','9']
alphabet =[]
ALPHABET =[]
'''
# 验证码一般都无视大小写;验证码长度4个字符
defrandom_captcha_text(char_set=number + alphabet + ALPHABET, captcha_size=4):
captcha_text = []
foriinrange(captcha_size):
c = random.choice(char_set)
captcha_text.append(c)
returncaptcha_text
# 生成字符对应的验证码
defgen_captcha_text_and_image():
while(1):
image = ImageCaptcha()
captcha_text = random_captcha_text()
captcha_text =''.join(captcha_text)
captcha = image.generate(captcha_text)
#image.write(captcha_text, captcha_text + '.jpg') # 写到文件
captcha_image = Image.open(captcha)
#captcha_image.show()
captcha_image = np.array(captcha_image)
ifcaptcha_image.shape==(60,160,3):
break
lena = mpimg.imread('jiqi10.jpg')
shrink = cv2.resize(lena, (160,60),interpolation=cv2.INTER_AREA)
print("testttttttt:",shrink.shape)
returncaptcha_text, captcha_image
if__name__ =='__main__':
# 测试
text, image = gen_captcha_text_and_image()
printimage
gray = np.mean(image, -1)
printgray
printimage.shape
printgray.shape
f = plt.figure()
ax = f.add_subplot(111)
ax.text(0.1,0.9, text,ha='center',va='center',transform=ax.transAxes)
plt.imshow(image)
plt.show()
#################################预测结果#######################
原文参考链接:http://www.cnblogs.com/ydf0509/p/6916435.html