统计学与pandas学习(六)—— 夏普比率

第六章《标准差(S.D.)也可用于理解高风险、高回报(夏普比率)》。

总结

  1. 投资基本上是对高风险、高回报的商品,还是低风险、低回报的商品的选择。这种商品的差异,是“性质的差异”,并不意味着优劣。
  2. 可以说,在同样的平均收益率之下,S.D.小的是优良的金融商品,而在同样的S.D.之下,平均收益率大的是优良的金融商品。
  3. 就此意义上来说,金融商品优劣性的评价基准是夏普比率(SPM)。夏普比率的公式(X的夏普比率)= [((X的回报)-(国债的收益率)] )/ (X的风险) 来计算。可以这样认为,夏普比率越大,金融商品就越优良。

注:尽管投资策略中夏普比例被普遍应用,但它也确实有局限(来源):

首先,夏普比率是回顾性的。它只考虑历史回报的分布和波动,而不是未来发生的。在根据夏普比例作出判断时,有一个隐含的假设,即过去将会与未来相似。显然并非总是如此,特别是在市场制度的变化下。夏普比率计算假设正在使用的回报是正态分布(即高斯)。不幸的是,市场往往高于正常分布的峰度。相比高斯分布将导致我们相信的来说,回报的分配存在“长尾效应”,极端事件有可能发生。 因此,夏普比率在表征尾部风险方面较差。

练习

获取数据(使用alpha_vantage库,读取ALPHA VANTAGE股票数据):

import pandas as pd
import numpy as np
from alpha_vantage.timeseries import TimeSeries

ts = TimeSeries(key='******',output_format='pandas')

# 使用000680股票为例子
data, meta_data = ts.get_daily('000680.SZ',outputsize='full')

# 使用2016年数据:
data = data.loc[(data.index>'2016-01-01') & (data.index<='2016-12-31')]

# 计算每日收益率:
data['daily_ret'] = data['close'].pct_change() 

# 以国债为参考,假设年化收益率为3.9%,每年252个交易日
data['excess_daily_ret'] = data['daily_ret'] - 0.039/252

# 计算年化夏普比率,默认为252个交易日。
np.sqrt(252) * data['excess_daily_ret'].mean() / data['excess_daily_ret'].std()

结果:

-0.37083735014815344

部分代码来自于QuantStart

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342