1、引用计数
查看某一元素的计数可以通过 sys.getrefcount(),当引用计数为0 的时候,内存就会被释放。
引用计数技术在每次引用创建和销毁时都要多做一些操作,这可能是一个小缺点,当创建和销毁很频繁的时候难免带来一些效率上的不足
创建一个变量的时候,a是一个引用,容器对象[1]是一个引用,所以有两个引用。两个引用的结果都是最后的元素对象。
好处:实时、简单
缺点:维护引用计数消耗资源。
循环引用: l1 = [] l2 = [] l1.append(l2) l2.append(l1)
2、标记-清除的回收机制
"标记-清除"是为了解决循环引用的问题.可以包含其他对象引用的容器对象(比如:list,set,dict,class,instance)都可能产生循环引用.
我们必须承认一个事实,如果两个对象的引用计数都为1,但是仅仅存在他们之间的循环引用,那么这两个对象都是需要被回收的,也就是说,它们的引用计数虽然表现为非0,但实际上有效的引用计数为0.我们必须先将循环引用摘掉,那么这两个对象的有效计数就现身了.假设两个对象为A、B,我们从A出发,因为它有一个对B的引用,则将B的引用计数减1;然后顺着引用达到B,因为B有一个对A的引用,同样将A的引用减1,这样,就完成了循环引用对象间环摘除.
各个对象的引用计数复制出来,对这个副本进行引用环的摘除。摘除完毕,此时a的引用计数的副本是0,b的引用计数的副本是1,c和d的引用计数的副本都是0。那么先把副本为非0的放到存活组,副本为0的打入死亡组。如果就这样结束的话,就错杀了a了,因为b还要用,我们把a所引用的对象在内存中清除了b还能用吗?显然还得在审一遍,别把无辜的人也给杀了,于是他就在存活组里,对每个对象都分析一遍,由于目前存活组只有b,那么他只对b分析,因为b要存活,所以b里的元素也要存活,于是在b中就发现了原a所指向的对象,于是就把他从死亡组中解救出来。至此,进过了一审和二审,最终把所有的任然在死亡组中的对象通通杀掉,而root object继续存活。b所指向的对象引用计数任然是2,原a所指向的对象的引用计数仍然是1
3、分代回收
Python将所有的对象分为0,1,2三代;
所有的新建对象都是0代对象;
当某一代对象经历过垃圾回收,依然存活,就被归入下一代对象。
系统中的所有内存块根据其存活时间划分为不同的集合,每一个集合就成为一个"代",垃圾收集的频率随着"代"的存活时间的增大而减小.也就是说,活得越长的对象,就越不可能是垃圾,就应该减少对它的垃圾收集频率.那么如何来衡量这个存活时间:通常是利用几次垃圾收集动作来衡量,如果一个对象经过的垃圾收集次数越多,可以得出:该对象存活时间就越长.