(转)Neo4j图数据库简介和底层原理

现实中很多数据都是用图来表达的,比如社交网络中人与人的关系、地图数据、或是基因信息等等。RDBMS并不适合表达这类数据,而且由于海量数据的存在,让其显得捉襟见肘。NoSQL数据库的兴起,很好地解决了海量数据的存放问题,图数据库也是NoSQL的一个分支,相比于NoSQL中的其他分支,它很适合用来原生表达图结构的数据。

下面一张图说明,相比于其他NoSQL,图数据库存放的数据规模有所下降,但是更能够表达复杂的数据。

通常来说,一个图数据库存储的结构就如同数据结构中的图,由顶点和边组成。

Neo4j是图数据库中一个主要代表,其开源,且用Java实现。经过几年的发展,已经可以用于生产环境。其有两种运行方式,一种是服务的方式,对外提供REST接口;另外一种是嵌入式模式,数据以文件的形式存放在本地,可以直接对本地文件进行操作。

Neo4j简介

Neo4j是一个高性能的,NOSQL图形数据库,它将结构化数据存储在网络上而不是表中。Neo4j也可以被看作是一个高性能的图引擎,该引擎具有成熟数据库的所有特性。程序员工作在一个面向对象的、灵活的网络结构下而不是严格、静态的表中——但是他们可以享受到具备完全的事务特性、企业级的数据库的所有好处。

Neo4j因其嵌入式、高性能、轻量级等优势,越来越受到关注。

图形数据结构

在一个图中包含两种基本的数据类型:Nodes(节点) 和 Relationships(关系)。Nodes 和 Relationships 包含key/value形式的属性。Nodes通过Relationships所定义的关系相连起来,形成关系型网络结构。

从这几个方面来说,Neo4j是一个合适的选择。Neo4j……

自带一套易于学习的查询语言(名为Cypher

不使用schema,因此可以满足你的任何形式的需求

与关系型数据库相比,对于高度关联的数据(图形数据)的查询快速要快上许多

它的实体与关系结构非常自然地切合人类的直观感受

支持兼容ACID的事务操作

提供了一个高可用性模型,以支持大规模数据量的查询,支持备份、数据局部性以及冗余

提供了一个可视化的查询控制台,你不会对它感到厌倦的

什么时候不应使用Neo4j?

作为一个图形NoSQL数据库,Neo4j提供了大量的功能,但没有什么解决方案是完美的。在以下这些用例中,Neo4j就不是非常适合的选择:

记录大量基于事件的数据(例如日志条目或传感器数据)

对大规模分布式数据进行处理,类似于Hadoop

二进制数据存储

适合于保存在关系型数据库中的结构化数据

neo4j存储模型

The node records contain only a pointer to their first property and their first relationship (in what is oftentermed the _relationship chain). From here, we can follow the (doubly) linked-list of relationships until we find the one we’re interested in, the LIKES relationship from Node 1 to Node 2 in this case. Once we’ve found the relationship record of interest, we can simply read its properties if there are any via the same singly-linked list structure as node properties, or we can examine the node records that it relates via its start node and end node IDs. These IDs, multiplied by the node record size, of course give the immediate offset of both nodes in the node store file.

上面的英文摘自(作者:IanRobinson) 一书,描述了 neo4j 的存储模型。Node和Relationship 的 Property 是用一个 Key-Value 的双向列表来保存的; Node 的 Relatsionship 是用一个双向列表来保存的,通过关系,可以方便的找到关系的 from-to Node. Node 节点保存第1个属性和第1个关系ID。

通过上述存储模型,从一个Node-A开始,可以方便的遍历以该Node-A为起点的图。下面给个示例,来帮助理解上面的存储模型,存储文件的具体格式在第2章详细描述。

示例1

在这个例子中,A~E表示Node 的编号,R1~R7 表示Relationship编号,P1~P10 表示Property的编号。

Node 的存储示例图如下,每个Node保存了第1个Property和 第1个Relationship:

关系的存储示意图如下:

从示意图可以看出,从 Node-B 开始,可以通过关系的 next 指针,遍历Node-B 的所有关系,然后可以到达与其有关系的第1层Nodes,在通过遍历第1层Nodes的关系,可以达到第2层Nodes,…

 参考:http://www.cnblogs.com/ljhero/archive/2012/05/13/2498039.html

http://www.cnblogs.com/ljhero/archive/2012/05/13/2498039.html

底层原理:http://sunxiang0918.cn/2015/06/27/neo4j-%E5%BA%95%E5%B1%82%E5%AD%98%E5%82%A8%E7%BB%93%E6%9E%84%E5%88%86%E6%9E%90/

转自:https://blog.csdn.net/leone911/article/details/78685123

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容