Machine Learning基础:激活函数(Activiation Function)
激活函数通常有如下一些性质:
非线性:当激活函数是非线性的时候,一个两层的神经网络就可以逼近基本上所有的函数了。但是,如果激活函数是恒等激活函数的时候(即f(x)=x),就不满足这个性质了。如果MLP使用的是恒等激活函数,那么其实整个网络跟单层神经网络是等价的。
可微性:当优化方法是基于梯度的时候,这个性质是必须的。
单调性:当激活函数是单调的时候,单层网络能够保证是凸函数。
f(x)≈x:当激活函数满足这个性质的时候,如果参数擦的初始化是random很小的值,那么神经网络的训练将会很高效。如果不满足这个性质,那么就需要很用心的去设置初始值。
输出值的范围:当激活函数输出值是有限的时候,基于梯度的优化方法会更加稳定,因为特征的表示受有限权值的影响更显著;当激活函数的输出是无限的时候,模型的训练会更加高效,不过在这种情况小,一般需要更小的learning rate.
1 Sigmoid:
Sigmoid 是常用的非线性的激活函数,它的数学形式如下:
它能够把输入的连续实值“压缩”到0和1之间。
特别的,如果是非常大的负数,那么输出就是0;如果是非常大的正数,输出就是1.
sigmoid 函数曾经被使用的很多,不过近年来,用它的人越来越少了。主要是因为它的一些 缺点:
Sigmoids saturate and kill gradients. (saturate 这个词怎么翻译?饱和?)sigmoid 有一个非常致命的缺点,当输入非常大或者非常小的时候(saturation),这些神经元的梯度是接近于0的,从图中可以看出梯度的趋势。所以,你需要尤其注意参数的初始值来尽量避免saturation的情况。如果你的初始值很大的话,大部分神经元可能都会处在saturation的状态而把gradient kill掉,这会导致网络变的很难学习。
Sigmoid 的 output 不是0均值. 这是不可取的,因为这会导致后一层的神经元将得到上一层输出的非0均值的信号作为输入。 产生的一个结果就是:如果数据进入神经元的时候是正的(e.g. x>0 elementwise in f=wTx+b),那么 w 计算出的梯度也会始终都是正的。 当然了,如果你是按batch去训练,那么那个batch可能得到不同的信号,所以这个问题还是可以缓解一下的。因此,非0均值这个问题虽然会产生一些不好的影响,不过跟上面提到的 kill gradients 问题相比还是要好很多的。
2 tanh:
tanh 如上图,可以看出,tanh 跟sigmoid还是很像的,实际上,tanh 是sigmoid的变形:
tanh(x)=2sigmoid(2x)−1
与 sigmoid 不同的是,tanh 是0均值的。因此,实际应用中,tanh 会比 sigmoid 更好。
3 ReLU:
近年来,ReLU 变的越来越受欢迎。它的数学表达式如下:
f(x)=max(0,x)
很显然,从上图可以看出,输入信号<0时,输出都是0,>0 的情况下,输出等于输入。
w 是二维的情况下,使用ReLU之后的效果如下:
3.1 ReLU 的优点:
Krizhevsky et al. 发现使用 ReLU 得到的SGD的收敛速度会比 sigmoid/tanh 快很多(看右图)。有人说这是因为它是linear,而且 non-saturating
相比于 sigmoid/tanh,ReLU 只需要一个阈值就可以得到激活值,而不用去算一大堆复杂的运算。
3.2 ReLU 的缺点:
当然 ReLU 也有缺点,就是训练的时候很”脆弱”,很容易就”die”了. 什么意思呢?
举个例子:一个非常大的梯度流过一个 ReLU 神经元,更新过参数之后,这个神经元再也不会对任何数据有激活现象了。如果这个情况发生了,那么这个神经元的梯度就永远都会是0.
实际操作中,如果你的learning rate 很大,那么很有可能你网络中的40%的神经元都”dead”了。
当然,如果你设置了一个合适的较小的learning rate,这个问题发生的情况其实也不会太频繁。
原因:
假设有一个神经网络的输入W遵循某种分布,对于一组固定的参数(样本),w的分布也就是ReLU的输入的分布。假设ReLU输入是一个低方差中心在+0.1的高斯分布。
在这个场景下,大多数ReLU的输入是正数,因此大多数输入经过ReLU函数能得到一个正值(ReLU is open),因此大多数输入能够反向传播通过ReLU得到一个梯度,因此ReLU的输入(w)一般都能得到更新通过随机反向传播(SGD)。
现在,假设在随机反向传播的过程中,有一个巨大的梯度经过ReLU,由于ReLU是打开的,将会有一个巨大的梯度传给输入(w)。这会引起输入w巨大的变化,也就是说输入w的分布会发生变化,假设输入w的分布现在变成了一个低方差的,中心在-0.1高斯分布。
在这个场景下:大多数ReLU的输入是负数,因此大多数输入经过ReLU函数能得到一个0(ReLU is close),因此大多数输入不能反向传播通过ReLU得到一个梯度,因此ReLU的输入w一般都得不到更新通过随机反向传播(SGD)发生了什么?只是ReLU函数的输入的分布函数发生了很小的改变(-0.2的改变),导致了ReLU函数行为质的改变。我们越过了0这个边界,ReLU函数几乎永久的关闭了。更重要的是ReLU函数一旦关闭,参数w就得不到更新,这就是所谓的‘dying ReLU’。
3.3 Leaky-ReLU、P-ReLU、R-ReLU
3.3.1 Leaky ReLUs:
就是用来解决这个“dying ReLU”的问题的。与 ReLU 不同的是:
f(x)=αx,(x<0)
f(x)=x,(x>=0)
这里的α是一个很小的常数。这样,即修正了数据分布,又保留了一些负轴的值,使得负轴信息不会全部丢失。
[图片上传失败...(image-f1aee7-1541580042064)]
关于Leaky ReLU 的效果,众说纷纭,没有清晰的定论。有些人做了实验发现 Leaky ReLU 表现的很好;有些实验则证明并不是这样。
3.3.2 Parametric ReLU:
对于 Leaky ReLU 中的α,通常都是通过先验知识人工赋值的。
然而可以观察到,损失函数对α的导数我们是可以求得的,可不可以将它作为一个参数进行训练呢?
Kaiming He的论文《Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification》指出,不仅可以训练,而且效果更好。
也以此提出了P Relu:
如果 ai=0,那么 PReLU 退化为 ReLU;如果ai是一个很小的固定值(如ai=0.01),则 PReLU 退化为 Leaky ReLU(LReLU)。 有实验证明,与ReLU相比,LReLU对最终的结果几乎没什么影响。
说明:
PReLU 只增加了极少量的参数,也就意味着网络的计算量以及过拟合的危险性都只增加了一点点。特别的,当不同 channels 使用相同的ai时,参数就更少了。
BP 更新ai时,采用的是带动量的更新方式,如下图:
上式的两个系数分别是动量和学习率。
需要特别注意的是:更新ai时不施加权重衰减(L2正则化),因为这会把 ai很大程度上push到0。事实上,即使不加正则化,试验中ai也很少有超过1的。
整个论文,ai被初始化为 0.25。
原文说使用了Parametric ReLU后,最终效果比不用提高了1.03%.
3.3.3 Randomized ReLU:
Randomized Leaky ReLU是 leaky ReLU 的random 版本 (α是random的).
它首次试在 kaggle 的NDSB 比赛中被提出的。
核心思想就是,在训练过程中,α是从一个高斯分布U(l,u)中 随机出来的,然后再测试过程中进行修正(有点像dropout的用法)。
数学表示如下:
[图片上传失败...(image-ae7778-1541580042064)]
在测试阶段,把训练过程中所有的αij取个平均值。NDSB 冠军的α是从U(3,8)中随机出来的。那么,在测试阶段,激活函数就是就是:
yij=xij / ((l+u) / 2)
看看 cifar-100 中的实验结果:
[图片上传失败...(image-1248fb-1541580042064)]
4 Maxout
Maxout出现在ICML2013上,作者Goodfellow将maxout和dropout结合后,号称在MNIST, CIFAR-10, CIFAR-100, SVHN这4个数据上都取得了start-of-art的识别率。
Maxout 公式如下:
假设 w 是2维,那么有:
可以注意到,ReLU 和 Leaky ReLU 都是它的一个变形(比如,w1,b1=0的时候,就是 ReLU).
Maxout的拟合能力是非常强的,它可以拟合任意的的凸函数。作者从数学的角度上也证明了这个结论,即只需2个maxout节点就可以拟合任意的凸函数了(相减),前提是”隐隐含层”节点的个数可以任意多.
[图片上传失败...(image-4b3b21-1541580042064)]
所以,Maxout 具有 ReLU 的优点(如:计算简单,不会 saturation),同时又没有 ReLU 的一些缺点 (如:容易 go die)。不过呢,还是有一些缺点的嘛:就是把参数double了。
5.others:
Trick of Choosing a Activation Function:
如果你使用 ReLU,那么一定要小心设置 learning rate,而且要注意不要让你的网络出现很多 “dead” 神经元,如果这个问题不好解决,那么可以试试 Leaky ReLU、PReLU 或者 Maxout.
最好不要用 sigmoid,你可以试试 tanh,不过可以预期它的效果会比不上 ReLU 和 Maxout.
还有,通常来说,很少会把各种激活函数串起来在一个网络中使用的。