RNAvelocity系列教程3:使用Seurat和velocyto估算RNA速率

此教程演示分析存储在 Seurat 对象中的 RNA 速率定量。参数基于RNA速率教程。如果您在工作中使用Seurat,请引用:

RNA velocity of single cells

Gioele La Manno, Ruslan Soldatov, Amit Zeisel, Emelie Braun, Hannah Hochgerner, Viktor Petukhov, Katja Lidschreiber, Maria E. Kastriti, Peter Lönnerberg, Alessandro Furlan, Jean Fan, Lars E. Borm, Zehua Liu, David van Bruggen, Jimin Guo, Xiaoling He, Roger Barker, Erik Sundström, Gonçalo Castelo-Branco, Patrick Cramer, Igor Adameyko, Sten Linnarsson & Peter V. Kharchenko

doi: 10.1038/s41586-018-0414-6

Website: https://velocyto.org

准备工作:提前安装好如下3个R包。

加载所需R包

library(Seurat)
library(velocyto.R)
library(SeuratWrappers)

下载所需示例数据

# If you don't have velocyto's example mouse bone marrow dataset, download with the CURL command
# curl::curl_download(url = 'http://pklab.med.harvard.edu/velocyto/mouseBM/SCG71.loom', destfile
# = '~/Downloads/SCG71.loom')

转换为seurat对象

ldat <- ReadVelocity(file = "~/Downloads/SCG71.loom")
bm <- as.Seurat(x = ldat)

整合降维聚类

bm <- SCTransform(object = bm, assay = "spliced")
bm <- RunPCA(object = bm, verbose = FALSE)
bm <- FindNeighbors(object = bm, dims = 1:20)
bm <- FindClusters(object = bm)
bm <- RunUMAP(object = bm, dims = 1:20)

速率分析及可视化

bm <- RunVelocity(object = bm, deltaT = 1, kCells = 25, fit.quantile = 0.02)
ident.colors <- (scales::hue_pal())(n = length(x = levels(x = bm)))
names(x = ident.colors) <- levels(x = bm)
cell.colors <- ident.colors[Idents(object = bm)]
names(x = cell.colors) <- colnames(x = bm)
show.velocity.on.embedding.cor(emb = Embeddings(object = bm, reduction = "umap"), vel = Tool(object = bm, 
    slot = "RunVelocity"), n = 200, scale = "sqrt", cell.colors = ac(x = cell.colors, alpha = 0.5), 
    cex = 0.8, arrow.scale = 3, show.grid.flow = TRUE, min.grid.cell.mass = 0.5, grid.n = 40, arrow.lwd = 1, 
    do.par = FALSE, cell.border.alpha = 0.1)
image.png
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容