深度与广度优先搜索

深度优先搜索(Depth-First Search / DFS)

基本思想

深度优先搜索,从起点出发,从规定的方向中选择其中一个不断地向前走,直到无法继续为止,然后尝试另外一种方向,直到最后走到终点。就像走迷宫一样,尽量往深处走。
DFS 解决的是连通性的问题,即,给定两个点,一个是起始点,一个是终点,判断是不是有一条路径能从起点连接到终点。起点和终点,也可以指的是某种起始状态和最终的状态。问题的要求并不在乎路径是长还是短,只在乎有还是没有。有时候题目也会要求把找到的路径完整的打印出来。

广度优先搜索(Breadth-First Search / BFS)

基本思想

广度优先搜索,一般用来解决最短路径的问题。和深度优先搜索不同,广度优先的搜索是从起始点出发,一层一层地进行,每层当中的点距离起始点的步数都是相同的,当找到了目的地之后就可以立即结束。
广度优先的搜索可以同时从起始点和终点开始进行,称之为双端 BFS。这种算法往往可以大大地提高搜索的效率。

代码实现

假设我们有这么一个图,里面有A、B、C、D、E、F、G、H 8 个顶点,点和点之间的联系如下图所示,对这个图进行深度优先和广度优先的遍历。


from collections import deque

class Solution:
    def __init__(self):
        self.graph = {}
        self.graph['A'] = ['B','D','G']
        self.graph['B'] = ['A','E','F']
        self.graph['C'] = ['F','H']
        self.graph['D'] = ['A','F']
        self.graph['E'] = ['B','G']
        self.graph['F'] = ['B','C','D']
        self.graph['G'] = ['A','E']
        self.graph['H'] = ['C']
        
        self.done = {}
        self.done['A'] = 1
        self.done['B'] = 1
        self.done['C'] = 1
        self.done['D'] = 1
        self.done['E'] = 1
        self.done['F'] = 1
        self.done['G'] = 1
        self.done['H'] = 1
        
    def DFS(self):
        stack = []
        stack.append('A')
        self.done['A'] = 0
        print('已经访问过A!')
        
        while stack:
            t = 0
            for i in self.graph[stack[-1]]:
                t += self.done[i]
            if t == 0:
                stack.pop()
                continue
            
            for i in self.graph[stack[-1]]:
                if self.done[i]:
                    self.done[i] = 0
                    stack.append(i)
                    print('已经访问过'+i+'!')
                    print(stack)
                    break
        print('遍历完成')
    
    def BFS(self):
        queue = deque()
        queue.append('A')
        self.done['A'] = 0
        print('已经访问过A!')
        
        while queue:
            for i in self.graph[queue.popleft()]:
                if self.done[i]:
                    self.done[i] = 0
                    queue.append(i)
                    print('已经访问过'+i+'!')
                    print(queue)

            
if __name__ == '__main__':
    s = Solution()
    s.BFS()
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容