【转】如何理解最小二乘法?

博客转自:https://blog.csdn.net/ccnt_2012/article/details/81127117

1 日用而不知

来看一个生活中的例子。比如说,有五把尺子:


用它们来分别测量一线段的长度,得到的数值分别为(颜色指不同的尺子):

之所以出现不同的值可能因为:
不同厂家的尺子的生产精度不同
尺子材质不同,热胀冷缩不一样
测量的时候心情起伏不定
......

总之就是有误差,这种情况下,一般取平均值来作为线段的长度:

日常中就是这么使用的。可是作为很事'er的数学爱好者,自然要想下:
这样做有道理吗?
用调和平均数行不行?
用中位数行不行?
用几何平均数行不行?

2 最小二乘法

换一种思路来思考刚才的问题。
首先,把测试得到的值画在笛卡尔坐标系中,分别记作yi:


其次,把要猜测的线段长度的真实值用平行于横轴的直线来表示(因为是猜测的,所以用虚线来画),记作y:

每个点都向y做垂线,垂线的长度就是|y - yi|,也可以理解为测量值和真实值之间的误差:

因为误差是长度,还要取绝对值,计算起来麻烦,就干脆用平方来代表误差:

总的误差的平方就是:

因为y是猜测的,所以可以不断变换:

自然,总的误差ε也是在不断变化的。
法国数学家,阿德里安-馬里·勒讓德(1752-1833)提出让总的误差的平方最小的y就是真值,这是基于,如果误差是随机的,应该围绕真值上下波动(关于这点可以看下“如何理解无偏估计?”)。
这就是最小二乘法,即:

这个猜想也蛮符合直觉的,来算一下。
这是一个二次函数,对其求导,导数为0的时候取得最小值:

进而:

正好是算术平均数。
原来算术平均数可以让误差最小啊,这下看来选用它显得讲道理了。
以下这种方法:

就是最小二乘法,所谓“二乘”就是平方的意思,台湾直接翻译为最小平方法。

3 推广

算术平均数只是最小二乘法的特例,适用范围比较狭窄。而最小二乘法用途就广泛。
比如温度与冰淇淋的销量:



看上去像是某种线性关系:



可以假设这种线性关系为:

通过最小二乘法的思想:

上图的i,x,y分别为:



总误差的平方为:

不同的a,b 会导致不同的ε,根据多元微积分的知识,当:

这个时候ε取最小值。
对于a, b而言,上述方程组为线性方程组,用之前的数据解出来:

也就是这根直线:

其实,还可以假设:

在这个假设下,可以根据最小二乘法,算出a, b, c,得到下面这根红色的二次曲线:

同一组数据,选择不同的f(x),通过最小二乘法可以得到不一样的拟合曲线,不同的数据,更可以选择不同的f(x),通过最小二乘法可以得到不一样的拟合曲线:

f(x)也不能选择任意的函数,还是有一些讲究的,这里就不介绍了。

4 最小二乘法与正态分布

我们对勒让德的猜测,即最小二乘法,仍然抱有怀疑,万一这个猜测是错误的怎么办?
数学王子高斯(1777-1855)也像我们一样心存怀疑。
高斯换了一个思考框架,通过概率统计那一套来思考。
让我们回到最初测量线段长度的问题。高斯想,通过测量得到了这些值:


每次的测量值xi都和线段长度的真值x之间存在一个误差:

这些误差最终会形成一个概率分布,只是现在不知道误差的概率分布是什么。假设概率密度函数为:

再假设一个联合概率密度函数,这样方便把所有的测量数据利用起来:

讲到这里,有些同学可能已经看出来了上面似然函数了(关于似然函数以及马上要讲到的极大似然估计,可以参考“如何理解极大似然估计法?”)。
因为L(x)是关于x的函数,并且也是一个概率密度函数(下面分布图形是随便画的):

根据极大似然估计的思想,概率最大的最应该出现(既然都出现了,而我又不是“天选之才”,那么自然不会是发生了小概率事件),也就是应该取到下面这点:

当下面这个式子成立时,取得最大值:

然后高斯想,最小二乘法给出的答案是:

如果最小二乘法是对的,那么x = x的平均数时应该取得最大值,即:

好,现在可以来解这个微分方程了。最终得到:

这是什么?这就是正态分布啊。
并且这还是一个充要条件:

也就是说,如果误差的分布是正态分布,那么最小二乘法得到的就是最有可能的值。
那么误差的分布是正态分布吗?
我们相信,误差是由于随机的、无数的、独立的、多个因素造成的,比如之前提到的:
不同厂家的尺子的生产精度不同
尺子材质不同,热胀冷缩不一样
测量的时候心情起伏不定
......

那么根据中心极限定理(参考“为什么正态分布如此常见?”),误差的分布就应该是正态分布。
因为高斯的努力,才真正奠定了最小二乘法的重要地位。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容