虚拟机研究系列-带你理解JVM的垃圾回收机制

堆内存                                                                         

       Java虚拟机中的堆是运行数据区中所管理的最大的一块内存空间,主要用于存放各种类的实例对象。

       在JVM中,堆被划分成两个不同的区域:新生代 ( Young )、老年代 ( Old )。新生代 ( Young ) 又被划分为三个区域:Eden(young区的核心以及主力存储区域)、From Survivor(转移存活对象的来源)、To Survivor(一般为空)。

      这样划分的目的是考虑到生命周期长短的问题,减少GC扫描的范围以及执行时机,并且采用哲学思想,“分而治之”的思维模型管理为了使 JVM 能够更敏捷和效率的管理堆内存中的对象,包括内存的分配以及回收。

堆的内存模型大致为:

JVM内存总体结构图

     从图中可以看出: 堆大小 = 新生代 + 老年代。堆的大小通过参数 –Xms、-Xmx 来指定。

(本人使用的是 JDK1.8,以下涉及的 JVM 默认值均以该版本为准。)

默认的,新生代 ( Young ) 与老年代 ( Old ) 的比例的值为 1:2 ( 该值可以通过参数 –XX:NewRatio 来指定 ),即:新生代 ( Young ) = 1/3 的堆空间大小。老年代 ( Old ) = 2/3 的堆空间大小。其中,新生代 ( Young ) 被细分为 Eden 和 两个 Survivor 区域,这两个 Survivor 区域分别被命名为 from 和 to,以示区分。

默认的,伊甸区(Eden)与幸存者区(Survivor)的比例的值为:8:1,即Eden : from : to = 8 : 1 : 1 ( 可以通过参数 –XX:SurvivorRatio 来设定 ),即: Eden = 8/10 的新生代空间大小from = to = 1/10 的新生代空间大小


    注意:设置年轻代大小的时候。整个JVM内存大小=年轻代大小 + 年老代大小 + 持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。这个参数是大于默认的参数默认的参数最后得出整体新生区占用比重为4/15。提高新生区的大小有利于提高响应时间与性能。


       JVM 每次只会使用 Eden 和其中的一块 Survivor 区域来为对象服务,所以无论什么时候,总是有一块 Survivor 区域是空闲着的。  因此,新生代实际可用的内存空间为 9/10 ( 即90% )的新生代空间。结合上面推算,也就是只能用整个堆的6/25。

GC堆                                                                    

     Java中的堆也是GC收集垃圾的主要区域。GC分为两种:Minor GC、Full GC ( 或称为 Major GC ),MIX GC (后续G1和ZGC)存在。

Minor GC

发生在新生代中的垃圾收集动作,所采用的是标记复制算法

       新生代几乎是所有 Java 对象出生的地方,即 Java 对象申请的内存以及存放都是在这个地方。Java 中的大部分对象通常不需长久存活,具有朝生夕灭的性质。当一个对象被判定为 "死亡" 时候,GC 就有责任来回收掉这部分对象的内存空间。新生代是 GC 收集垃圾的频繁区域。

      当对象在Eden( 包括一个Survivor 区域,这里假设是from区域 ) 出生后,在经过一次 Minor GC 后,如果对象还存活,并且能够被另外一块 Survivor 区域所容纳( 上面已经假设为 from 区域,这里应为 to 区域,即 to 区域有足够的内存空间来存储Eden和from 区域中存活的对象),则使用复制算法将这些仍然还存活的对象复制到另外一块 Survivor 区域 ( 即 to 区域 ) 中,然后清理所使用过的 Eden 以及 Survivor 区域 ( 即 from 区域 ),并且将这些对象的年龄设置为1,以后对象在Survivor区每熬过一次Minor GC,就将对象的年龄 + 1,当对象的年龄达到某个值时 ( 默认是 15 岁,可以通过参数 -XX:MaxTenuringThreshold 来设定 ),这些对象就会成为老年代。


      但这也不是一定的,对于一些较大的对象 ( 即需要分配一块较大的连续内存空间 ) 则是直接进入到老年代。(PretenureThreshold)一般根据数据第一次回收的数据作为参考值。

Full GC 

发生在老年代的垃圾收集动作,所采用的是标记-清除算法

        现实的生活中,老年代的人通常会比新生代的人 "早死"。堆内存中的老年代(Old)不同于这个,老年代里面的对象几乎个个都是在 Survivor 区域中熬过来的,它们是不会那么容易就 "死掉" 了的。因此,Full GC 发生的次数不会有 Minor GC 那么频繁,并且做一次 Full GC 要比进行一次Minor GC的时间更长。

       另外,标记-清除算法收集垃圾的时候会产生许多的内存碎片 ( 即不连续的内存空间 ),此后需要为较大的对象分配内存空间时,若无法找到足够的连续的内存空间,就会提前触发一次 GC 的收集动作。

GC 日志                

public static void main(String[] args) {

    Object obj = new Object();

    System.gc();

    System.out.println();

    obj = new Object();

    obj = new Object();

    System.gc();

    System.out.println();

}

设置 JVM 参数为 -XX:+PrintGCDetails,使得控制台能够显示 GC 相关的日志信息,执行上面代码,下面是其中一次执行的结果。

Full GC 信息与 Minor GC 的信息是相似的,这里就不一个一个的画出来了。

从 Full GC 信息可知,新生代可用的内存大小约为 18M,则新生代实际分配得到的内存空间约为 20M。老年代分得的内存大小约为 42M,堆的可用内存的大小约为 60M。可以计算出: 18432K ( 新生代可用空间 ) + 42112K ( 老年代空间 ) = 60544K ( 堆的可用空间 )

新生代约占堆大小的 1/3,老年代约占堆大小的 2/3。也可以看出,GC 对新生代的回收比较乐观,而对老年代以及方法区的回收并不明显或者说不及新生代。

并且在这里 Full GC 耗时是 Minor GC 的 22.89 倍。

JVM 参数选项                                                                 

jvm 可配置的参数选项可以参考 Oracle 官方网站给出的相关信息:http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

下面只列举其中的几个常用和容易掌握的配置选项

-Xms初始堆大小。如:-Xms256m(默认为操作系统内存的1/64)

-Xmx最大堆大小。如:-Xmx512m(默认为操作系统内存的1/4)

-Xmn新生代大小。通常为Xmx的1/3或1/4,Sun官方推荐配置为整个堆的3/8。新生代 = Eden + 2 个 Survivor 空间。实际可用空间为 = Eden + 1 个 Survivor,即 90% 。

-Xss JDK1.5-每个线程栈的大小为256K,JDK1.5+ 每个线程堆栈大小为1M,一般来说如果栈不是很深的话,1M是绝对够用了的,此值太小的话会造成StackOverflowError切记,不是OOM

-XX:NewRatio新生代与老年代的比例,如 –XX:NewRatio=2,则新生代占整个堆空间的1/3,老年代占2/3

-XX:SurvivorRatio新生代中 Eden 与 Survivor 的比值。默认值为 8。即 Eden 占新生代空间的 8/10,另外两个 Survivor 各占 1/10 

-XX:PermSize永久代(方法区)的初始大小(默认为操作系统内存的1/64)

-XX:MaxPermSize永久代(方法区)的最大值(默认为操作系统内存的1/4)

-XX:+PrintGCDetails打印 GC 信息

-XX:+HeapDumpOnOutOfMemoryError让虚拟机在发生内存溢出时 Dump 出当前的内存堆转储快照,以便分析用

/** 

  -Xms60m

  -Xmx60m

  -Xmn20m

  -XX:NewRatio=2 ( 若 Xms = Xmx, 并且设定了 Xmn, 那么该项配置就不需要配置了 )

  -XX:SurvivorRatio=8

  -XX:PermSize=30m

  -XX:MaxPermSize=30m

 -XX:+PrintGCDetails

 */

public static void main(String[] args) {

       new Test().doTest();

 }

public void doTest(){

    Integer M =new Integer(1024 * 1024 * 1);

   //单位, 兆(M)

    byte[] bytes = new byte[1 * M];

   //申请 1M 大小的内存空间

    bytes =null;//断开引用链

    System.gc();

    //通知 GC 收集垃圾

    System.out.println();

    bytes =new byte[1 * M];

   //重新申请 1M 大小的内存空间

   bytes =new byte[1 * M];

   //再次申请 1M 大小的内存空间

    System.gc();

    System.out.println();

 }

按上面代码中注释的信息设定 jvm 相关的参数项,并执行程序,下面是一次执行完成控制台打印的结果:

[ GC [ PSYoungGen:  1351K -> 288K (18432K) ]  1351K -> 288K (59392K), 0.0012389 secs ]  [ Times: user=0.00 sys=0.00, real=0.00 secs ]

[ Full GC (System) 

[ PSYoungGen:  288K -> 0K (18432K) ] 

[ PSOldGen:  0K -> 160K (40960K) ]  288K -> 160K (59392K) 

[ PSPermGen:  2942K -> 2942K (30720K) ],  0.0057649 secs ] [ Times:  user=0.00  sys=0.00,  real=0.01 secs ]

[ GC [ PSYoungGen:  2703K -> 1056K (18432K) ]  2863K -> 1216K(59392K),  0.0008206 secs ]  [ Times: user=0.00 sys=0.00, real=0.00 secs ]

[ Full GC (System)  [ PSYoungGen:  1056K -> 0K (18432K) ]  [ PSOldGen:  160K -> 1184K (40960K) ]  1216K -> 1184K (59392K) 

[ PSPermGen:  2951K -> 2951K (30720K) ], 0.0052445 secs ]  [ Times: user=0.02 sys=0.00, real=0.01 secs ]

Heap

PSYoungGen  total 18432K, used 327K [0x00000000fec00000, 0x0000000100000000, 0x0000000100000000)  eden space 16384K, 2% used [0x00000000fec00000,0x00000000fec51f58,0x00000000ffc00000)  from space 2048K, 0% used [0x00000000ffe00000,0x00000000ffe00000,0x0000000100000000)  to  space 2048K, 0% used [0x00000000ffc00000,0x00000000ffc00000,0x00000000ffe00000)

PSOldGen  total 40960K, used 1184K [0x00000000fc400000, 0x00000000fec00000, 0x00000000fec00000)  object space 40960K, 2% used [0x00000000fc400000,0x00000000fc5281f8,0x00000000fec00000)

PSPermGen  total 30720K, used 2959K [0x00000000fa600000, 0x00000000fc400000, 0x00000000fc400000)  object space 30720K, 9% used [0x00000000fa600000,0x00000000fa8e3ce0,0x00000000fc400000)

从打印结果可以看出,堆中新生代的内存空间为 18432K ( 约 18M ),eden 的内存空间为 16384K ( 约 16M),from / to survivor 的内存空间为 2048K ( 约 2M)。

这里所配置的 Xmn 为 20M,也就是指定了新生代的内存空间为 20M,可是从打印的堆信息来看,新生代怎么就只有 18M 呢? 另外的 2M 哪里去了? 别急,是这样的。新生代 = eden + from + to = 16 + 2 + 2 = 20M,可见新生代的内存空间确实是按 Xmn 参数分配得到的。而且这里指定了 SurvivorRatio = 8,因此,eden = 8/10 的新生代空间 = 8/10 * 20 = 16M。from = to = 1/10 的新生代空间 = 1/10 * 20 = 2M

堆信息中新生代的 total 18432K 是这样来的: eden + 1 个 survivor = 16384K + 2048K = 18432K,即约为 18M。

因为 jvm 每次只是用新生代中的 eden 和 一个 survivor,因此新生代实际的可用内存空间大小为所指定的 90%。

因此可以知道,这里新生代的内存空间指的是新生代可用的总的内存空间,而不是指整个新生代的空间大小。

另外,可以看出老年代的内存空间为 40960K ( 约 40M ),堆大小 = 新生代 + 老年代。因此在这里,老年代 = 堆大小 - 新生代 = 60 - 20 = 40M。

最后,这里还指定了 PermSize = 30m,PermGen 即永久代 ( 方法区 ),它还有一个名字,叫非堆,主要用来存储由 jvm 加载的类文件信息、常量、静态变量等。

回到 doTest() 方法中,可以看到代码在第 17、21、22 这三行中分别申请了一块 1M 大小的内存空间,并在 19 和 23 这两行中分别显式的调用了 System.gc()。从控制台打印的信息来看,每次调 System.gc(),是先进行 Minor GC,然后再进行 Full GC。

第19行触发的 Minor GC 收集分析:

从信息 PSYoungGen :  1351K -> 288K,可以知道,在第 17 行为 bytes 分配的内存空间已经被回收完成。

引起 GC 回收这 1M 内存空间的因素是第 18 行的 bytes = null;   bytes 为 null 表明之前申请的那 1M 大小的内存空间现在已经没有任何引用变量在使用它了,并且在内存中它处于一种不可到达状态 ( 即没有任何引用链与 GC Roots 相连 )。那么,当 Minor GC 发生的时候,GC 就会来回收掉这部分的内存空间。

第 19 行触发的 Full GC 收集分析:

在 Minor GC 的时候,信息显示 PSYoungGen :  1351K -> 288K,再看看 Full GC 中显示的 PSYoungGen :  288K -> 0K,可以看出,Full GC 后,新生代的内存使用变成0K 了,那么这 288K 到底哪去了 ? 难道都被 GC 当成垃圾回收掉了 ? 当然不是了。我还特意在 main 方法中 new 了一个 Test 类的实例,这里的 Test 类的实例属于小对象,它应该被分配到新生代内存当中,现在还在调用这个实例的 doTest 方法呢,GC 不可能在这个时候来回收它的。

接着往下看 Full GC 的信息,会发现一个很有趣的现象,PSOldGen:  0K  -> 160K,可以看到,Full GC 后,老年代的内存使用从 0K 变成了 160K,想必你已经猜到大概是怎么回事了。当 Full GC 进行的时候,默认的方式是尽量清空新生代 ( YoungGen ),因此在调 System.gc() 时,新生代 ( YoungGen ) 中存活的对象会提前进入老年代。

第 23 行触发的 Minor GC 收集分析:

从信息 PSYoungGen :  2703K -> 1056K,可以知道,在第 21 行创建的,大小为 1M 的数组被 GC 回收了。在第 22 行创建的,大小也为 1M 的数组由于 bytes 引用变量还在引用它,因此,它暂时未被 GC 回收。 

第 23 行触发的 Full GC 收集分析:

在 Minor GC 的时候,信息显示 PSYoungGen :  2703K -> 1056K,Full GC 中显示的 PSYoungGen :  1056K -> 0K,以及 PSOldGen:  160K -> 1184K,可以知道,新生代 ( YoungGen ) 中存活的对象又提前进入老年代了。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容

  • 夜莺2517阅读 127,717评论 1 9
  • 我是黑夜里大雨纷飞的人啊 1 “又到一年六月,有人笑有人哭,有人欢乐有人忧愁,有人惊喜有人失落,有的觉得收获满满有...
    陌忘宇阅读 8,532评论 28 53
  • 兔子虽然是枚小硕 但学校的硕士四人寝不够 就被分到了博士楼里 两人一间 在学校的最西边 靠山 兔子的室友身体不好 ...
    待业的兔子阅读 2,597评论 2 9
  • 信任包括信任自己和信任他人 很多时候,很多事情,失败、遗憾、错过,源于不自信,不信任他人 觉得自己做不成,别人做不...
    吴氵晃阅读 6,187评论 4 8