搜索算法
搜索算法(searching algorithm) 用于在数据结构中搜索一个或一组满足特定条件的元素。
主要分为以下两类:
- 通过遍历数据结构来定位目标元素,例如数组、链表、数、和图的遍历
- 利用数据组织结构或数据包含的先验信息,实现高效元素查找,例如二分查找,哈希查找和二叉搜索树查找。
暴力搜索
暴力搜索通过遍历数据结构的每个元素来定位目标元素。
- "线性搜索"适用于数组和链表等线性数据结构。他从数据结构的一段开始,逐个访问元素,直到找到目标元素或道道另一端仍没有找到目标元素为止。
- “广度优先搜索”和“深度优先搜索”是图和数的两种遍历策略。广度优先搜索从初始结点开始逐层搜索,由近及远的访问各个节点。深度优先搜索从初始节点开始,沿着一条路径走到头,再回溯并尝试其他路径,直到遍历完整个数据结构。
暴力搜索的优点是简单且通用性好,无需对数据做预处理和借助额外的数据结构。
然而,此类算法的时间复杂度为O(n),在数据量较大的情况下性能较差。
自适应搜索
自适应搜索利用数据的特有属性来优化搜索过程,从而更高效地定位目标元素。
- “二分查找” 利用数据的有序性实现高效查找,仅适用于数组。
- “哈希查找” 利用哈希表将搜索数据和目标数据建立为键值对映射,从而实现查询操作。
- “树查找” 在特定的树结构中,基于比较节点值来快速排除节点,从而定位目标元素。
此类算法优点是效率高,时间复杂度可达到O(logn)甚至O(1),然而使用这些算法,需要对数据进行预处理,预处理过程中则需要额外的时间和空间开销。
自适应搜索算法常被称为查找算法,主要用于在特定数据结构中快速检索目标元素。
搜索算法选取
搜索算法的选择还取决于数据体量、搜索性能要求、数据查询与更新频率等。
线性搜索
- 通用性较好,无须任何数据预处理操作。假如我们仅需查询一次数据,那么其他三种* 方法的数据预处理的时间比线性搜索的时间还要更长。
- 适用于体量较小的数据,此情况下时间复杂度对效率影响较小。
- 适用于数据更新频率较高的场景,因为该方法不需要对数据进行任何额外维护。
二分查找
- 适用于大数据量的情况,效率表现稳定,最差时间复杂度为O(logn)。
- 数据量不能过大,因为存储数组需要连续的内存空间。
- 不适用于高频增删数据的场景,因为维护有序数组的开销较大。
哈希查找
- 适合对查询性能要求很高的场景,平均时间复杂度为 O(1)。
- 不适合需要有序数据或范围查找的场景,因为哈希表无法维护数据的有序性。
- 对哈希函数和哈希冲突处理策略的依赖性较高,具有较大的性能劣化风险。
- 不适合数据量过大的情况,因为哈希表需要额外空间来最大程度地减少冲突,从而提供良好的查询性能。
树查找
- 适用于海量数据,因为树节点在内存中是分散存储的。
- 适合需要维护有序数据或范围查找的场景。
- 在持续增删节点的过程中,二叉搜索树可能产生倾斜,时间复杂度劣化至 O(n)。
- 若使用 AVL 树或红黑树,则各项操作可在O(logn)效率下稳定运行,但维护树平衡的操作会增加额外的开销。