文章作者:Tyan
博客:noahsnail.com | CSDN | 简书
1. Description
2. Solution
解析:Version 1,这道题跟Leetcode 560的解法很像,首先计算数组的总和total
,如果total < x
,则无论如何也不会将x
减到0
,如果total = x
,则需要移除所有元素才能将x
变为0
,由于x
一直是从最左或最右移除,因此问题可以变为:找到一个最大连续子数组,使得其和为total - x
,这样可以保证剩下的元素之和等于x
,个数最少,剩下元素位于左右子数组的左右两侧。使用前缀和方法,依次求数组的前缀和,并将前缀和以及当前索引位置记录到字典stat
中,要寻找的连续子数组和为target
,如果当前前缀和减去target
位于字典中,则计算子数组的长度并更新最大子数组长度maximum
,注意如果当前前缀和刚好等于target
,此时寻找的差为0
,为了保证正确的子数组长度,stat[0] = -1
,最后,如果maximum
的值一直没更新,则说明没找满足条件的子数组,此时应返回-1
,否则,返回n - maximum
。Version 2移除了数组和与x
的比较,效率要差一些。
- Version 1
class Solution:
def minOperations(self, nums: List[int], x: int) -> int:
n = len(nums)
total = sum(nums)
if total < x:
return -1
if total == x:
return n
target = total - x
prefix = 0
stat = {}
stat[0] = -1
maximum = -1
for i in range(n):
prefix += nums[i]
stat[prefix] = i
if prefix - target in stat:
maximum = max(maximum, i - stat[prefix - target])
if maximum == -1:
return -1
return n - maximum
- Version 2
class Solution:
def minOperations(self, nums: List[int], x: int) -> int:
n = len(nums)
target = sum(nums) - x
prefix = 0
stat = {}
stat[0] = -1
maximum = -1
for i in range(n):
prefix += nums[i]
stat[prefix] = i
if prefix - target in stat:
maximum = max(maximum, i - stat[prefix - target])
if maximum == -1:
return -1
return n - maximum