深入理解TensorFlow中的tf.metrics算子

前言

本文将深入介绍Tensorflow内置的评估指标算子。

  • tf.metrics.accuracy()

  • tf.metrics.precision()

  • tf.metrics.recall()

  • tf.metrics.mean_iou()

简单起见,本文在示例中使用tf.metrics.accuracy(),但它的模式以及它背后的原理将适用于所有评估指标。如果您只想看到有关如何使用tf.metrics的示例代码,请跳转到5.1和5.2节,如果您想要了解为何使用这种方式,请继续阅读。

这篇文章将通过一个非常简单的代码示例来理解tf.metrics的原理,这里使用Numpy创建自己的评估指标。这将有助于对Tensorflow中的评估指标如何工作有一个很好的直觉认识。然后,我们将给出如何采用tf.metrics快速实现同样的功能。但首先,我先讲述一下写下这篇博客的由来。

背景

这篇文章的由来是来自于我尝试使用tf.metrics.mean_iou评估指标进行图像分割,但却获得完全奇怪和不正确的结果。我花了一天半的时间来弄清楚我哪里出错了。你会发现,自己可能会非常容易错误地使用tf的评估指标。截至2017年9月11日,tensorflow文档并没有非常清楚地介绍如何正确使用Tensorflow的评估指标。

因此,这篇文章旨在帮助其他人避免同样的错误,并且深入理解其背后的原理,以便了解如何正确地使用它们。

生成数据

在我们开始使用任何评估指标之前,让我们先从简单的数据开始。我们将使用以下Numpy数组作为我们预测的标签和真实标签。数组的每一行视为一个batch,因此这个例子中共有4个batch。

import numpy as np
labels = np.array([[1,1,1,0],
                   [1,1,1,0],
                   [1,1,1,0],
                   [1,1,1,0]], dtype=np.uint8)
predictions = np.array([[1,0,0,0],
                        [1,1,0,0],
                        [1,1,1,0],
                        [0,1,1,1]], dtype=np.uint8)
n_batches = len(labels)

建立评价指标

为了简单起见,这里采用的评估指标是准确度(accuracy):

如果我们想计算整个数据集上的accuracy,可以这样计算:

n_items = labels.size
accuracy = (labels ==  predictions).sum() / n_items
print("Accuracy :", accuracy)
[OUTPUT]
Accuracy : 0.6875

这种方法的问题在于它不能扩展到大型数据集,这些数据集太大而无法一次性加载到内存。为了使其可扩展,我们希望使评估指标能够逐步更新,每次更新一个batch中预测值和标签。为此,我们需要跟踪两个值:

  • 正确预测的例子总和

  • 目前所有例子的总数

在Python中,我们创建两个全局变量:

# Initialize running variables
N_CORRECT = 0
N_ITEMS_SEEN = 0

每次新来一个batch,我们将这个batch中的预测情况更新到这两个变量中:

# Update running variables
N_CORRECT += (batch_labels == batch_predictions).sum()
N_ITEMS_SEEN += batch_labels.size

而且,我们可以实时地计算每个点处的accuracy:

# Calculate accuracy on updated values
acc = float(N_CORRECT) / N_ITEMS_SEEN

合并前面的功能,我们创建如下的代码:

# Create running variables
N_CORRECT = 0
N_ITEMS_SEEN = 0
def reset_running_variables():
    """ Resets the previous values of running variables to zero     """
    global N_CORRECT, N_ITEMS_SEEN
    N_CORRECT = 0
    N_ITEMS_SEEN = 0
def update_running_variables(labs, preds):
    global N_CORRECT, N_ITEMS_SEEN
    N_CORRECT += (labs == preds).sum()
    N_ITEMS_SEEN += labs.size
def calculate_accuracy():
    global N_CORRECT, N_ITEMS_SEEN
    return float(N_CORRECT) / N_ITEMS_SEEN

4.1 整体accuracy

使用上面的函数,当我们便利完所有的batch之后,可以计算出整体accuracy:

reset_running_variables()
for i in range(n_batches):
    update_running_variables(labs=labels[i], preds=predictions[i])
accuracy = calculate_accuracy()
print("[NP] SCORE: ", accuracy)
[OUTPUT]
[NP] SCORE:  0.6875

4.2 每个batch的accuracy

但是,如果我们想要计算每个batch的accuracy,那就要重新组织我们的代码了。每次更新全局变量之前,你需要先重置它们(归为0):

for i in range(n_batches):
    reset_running_variables()
    update_running_variables(labs=labels[i], preds=predictions[i])
    acc = calculate_accuracy()
    print("- [NP] batch {} score: {}".format(i, acc))
[OUTPUT]
- [NP] batch 0 score: 0.5
- [NP] batch 1 score: 0.75
- [NP] batch 2 score: 1.0
- [NP] batch 3 score: 0.5

Tensorflow中的metrics

在第4节中我们将计算评估指标的操作拆分为不同函数,这其实与Tensorflow中tf.metrics背后原理是一样的。当我们调用tf.metrics.accuracy函数时,类似的事情会发生:

  • 会同样地创建两个变量(变量会加入tf.GraphKeys.LOCAL_VARIABLES集合中),并将其放入幕后的计算图中:

    total(相当于N_CORRECT)

    count(相当于N_ITEMS_SEEN)

  • 返回两个tensorflow操作。

    accuracy(相当于calculate_accuracy())

    update_op(相当于update_running_variables())

为了初始化和重置变量,比如第4节中的reset_running_variables函数,我们首先需要获得这些变量(total和count)。你可以在第一次调用时为tf.metrics.accuracy函数显式指定一个名称,比如:

tf.metrics.accuracy(label, prediction, name="my_metric")

然后就可以根据作用范围找到隐式创建的2个变量:

# Isolate the variables stored behind the scenes by the metric operation
running_vars = tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES, scope="my_metric")
<tf.Variable 'my_metric/total:0' shape=() dtype=float32_ref>,
<tf.Variable 'my_metric/count:0' shape=() dtype=float32_ref>

接下了我们可以创建一个初始化操作,以可以初始化或者重置两个变量:

running_vars_initializer = tf.variables_initializer(var_list=running_vars)

当你需要初始化或者重置变量时,只需要在session中运行一下即可:

session.run(running_vars_initializer)

注意:除了手动分离变量,然后创建初始化op,在TF中更常用的是下面的操作:

session.run(tf.local_variables_initializer())

所以,有时候你看到上面的操作不要大惊小怪,其实只是初始化了在tf.GraphKeys.LOCAL_VARIABLES集合中的变量,但是这样做把所以变量都初始化了,使用时要特别注意。

知道上面的东西,我们很容易计算整体accuracy和batch中的accuracy。

5.1 计算整体accuracy

在TF中要计算整体accuracy,只需要如此:

import tensorflow as tf
graph = tf.Graph()
with graph.as_default():
    # Placeholders to take in batches onf data
    tf_label = tf.placeholder(dtype=tf.int32, shape=[None])
    tf_prediction = tf.placeholder(dtype=tf.int32, shape=[None])
    # Define the metric and update operations
    tf_metric, tf_metric_update = tf.metrics.accuracy(tf_label,
                                                      tf_prediction,
                                                      name="my_metric")
    # Isolate the variables stored behind the scenes by the metric operation
    running_vars = tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES, scope="my_metric")
    # Define initializer to initialize/reset running variables
    running_vars_initializer = tf.variables_initializer(var_list=running_vars)
with tf.Session(graph=graph) as session:
    session.run(tf.global_variables_initializer())
    # initialize/reset the running variables
    session.run(running_vars_initializer)
    for i in range(n_batches):
        # Update the running variables on new batch of samples
        feed_dict={tf_label: labels[i], tf_prediction: predictions[i]}
        session.run(tf_metric_update, feed_dict=feed_dict)
    # Calculate the score
    score = session.run(tf_metric)
    print("[TF] SCORE: ", score)
[OUTPUT]
[TF] SCORE:  0.6875

5.2 计算每个batch的accuracy

为了分别计算各个batch的准确度,在每批新数据之前将变量重置为零:

with tf.Session(graph=graph) as session:
    session.run(tf.global_variables_initializer())
    for i in range(n_batches):
        # Reset the running variables
        session.run(running_vars_initializer)
        # Update the running variables on new batch of samples
        feed_dict={tf_label: labels[i], tf_prediction: predictions[i]}
        session.run(tf_metric_update, feed_dict=feed_dict)
        # Calculate the score on this batch
        score = session.run(tf_metric)
        print("[TF] batch {} score: {}".format(i, score))
[OUTPUT]
[TF] batch 0 score: 0.5
[TF] batch 1 score: 0.75
[TF] batch 2 score: 1.0
[TF] batch 3 score: 0.5

注意:如果每个batch计算之前不重置变量的话,其实计算的累积accuracy,就是目前已经运行数据的accuracy。

5.3 要避免的问题

不要在相同的session.run()中同时运行tf_metrics和tf_metric_update,比如这样:

_ , score = session.run([tf_metric_update, tf_metric], feed_dict=feed_dict)
score, _ = session.run([tf_metric, tf_metric_update], feed_dict=feed_dict)

在Tensorflow 1.3 (或许其它版本)中,这可能得到不一致的结果。这两个op,update_op才是真正负责更新变量,而第一个op只是简单根据当前变量计算评价指标,所以你应该先执行update_op,然后再用第一个op计算指标。需要注意的,update_op执行后一个作用是更新变量,另外会同时返回一个结果,对于tf.metric.accuracy,就是更新变量后实时计算的accuracy。

其它metrics

tf.metrics中的其他评估指标将以相同的方式工作。它们之间的唯一区别可能是调用tf.metrics函数时需要额外参数。例如,tf.metrics.mean_iou需要额外的参数num_classes来表示预测的类别数。另一个区别是背后所创建的变量,如tf.metrics.mean_iou创建的是一个混淆矩阵,但仍然可以按照我在本文第5部分中描述的方式收集和初始化它们。

结语

对于TF中所有metric,其都是返回两个op,一个是计算评价指标的op,另外一个是更新op,这个op才是真正其更新作用的。我想之所以TF会采用这种方式,是因为metric所服务的其实是评估模型的时候,此时你需要收集整个数据集上的预测结果,然后计算整体指标,而TF的metric这种设计恰好满足这种需求。但是在训练模型时使用它们,就是理解它的原理,才可以得到正确的结果。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容