2020-08-16 欠拟合和过拟合的解决方法

解决过拟合(高方差)的方法

1.增加训练数据数

  • 发生过拟合最常见的现象就是数据量太少而模型太复杂
  • 过拟合是由于模型学习到了数据的一些噪声特征导致,增加训练数据的量能够减少噪声的影响,让模型更多地学习数据的一般特征
  • 增加数据量有时可能不是那么容易,需要花费一定的时间和精力去搜集处理数据
  • 利用现有数据进行扩充或许也是一个好办法。例如在图像识别中,如果没有足够的图片训练,可以把已有的图片进行旋转,拉伸,镜像,对称等,这样就可以把数据量扩大好几倍而不需要额外补充数据
  • 注意保证训练数据的分布和测试数据的分布要保持一致,二者要是分布完全不同,那模型预测真可谓是对牛弹琴了

2.使用正则化约束

  • 在代价函数后面添加正则化项,可以避免训练出来的参数过大从而使模型过拟合。使用正则化缓解过拟合的手段广泛应用,不论是在线性回归还是在神经网络的梯度下降计算过程中,都应用到了正则化的方法。常用的正则化有l1正则和l2正则,具体使用哪个视具体情况而定,一般l2正则应用比较多

3.减少特征数

  • 欠拟合需要增加特征数,那么过拟合自然就要减少特征数。去除那些非共性特征,可以提高模型的泛化能力

4.调整参数和超参数

  1. 不论什么情况,调参是必须的

5.降低模型的复杂度

  • 欠拟合要增加模型的复杂度,那么过拟合正好反过来

6.使用Dropout

  • 按一定的比例去除隐藏层的神经单元,使神经网络的结构简单化

7.提前结束训练

  • 即early
    stopping,在模型迭代训练时候记录训练精度(或损失)和验证精度(或损失),倘若模型训练的效果不再提高,比如训练误差一直在降低但是验证误差却不再降低甚至上升,这时候便可以结束模型训练了

解决欠拟合(高偏差)的方法

1.模型复杂化

  • 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等
  • 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树等

2.增加更多的特征,使输入数据具有更强的表达能力

  • 特征挖掘十分重要,尤其是具有强表达能力的特征,往往可以抵过大量的弱表达能力的特征
  • 特征的数量往往并非重点,质量才是,总之强特最重要
  • 能否挖掘出强特,还在于对数据本身以及具体应用场景的深刻理解,往往依赖于经验

3.调整参数和超参数

  • 超参数包括:
    • 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等
    • 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等

4.增加训练数据往往没有用

  • 欠拟合本来就是模型的学习能力不足,增加再多的数据给它训练它也没能力学习好

5.降低正则化约束

  • 正则化约束是为了防止模型过拟合,如果模型压根不存在过拟合而是欠拟合了,那么就考虑是否降低正则化参数λ或者直接去除正则化项
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,084评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,623评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,450评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,322评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,370评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,274评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,126评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,980评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,414评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,599评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,773评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,470评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,080评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,713评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,852评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,865评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,689评论 2 354