openGauss学习笔记-279 openGauss性能调优-实际调优案例08-改写SQL消除in-clause279.1 现象描述279.2 优化说明
openGauss学习笔记-279 openGauss性能调优-实际调优案例08-改写SQL消除in-clause
279.1 现象描述
in-clause/any-clause是常见的SQL语句约束条件,有时in或any后面的clause都是常量,类似于:
select
count(1)
from calc_empfyc_c1_result_tmp_t1
where ls_pid_cusr1 in (‘20120405’, ‘20130405’);
或者
select
count(1)
from calc_empfyc_c1_result_tmp_t1
where ls_pid_cusr1 in any(‘20120405’, ‘20130405’);
但是也有一些如下的特殊用法:
SELECT
*
FROM test1 t1, test2 t2
WHERE t1.a = any(values(t2.a),(t2.b));
其中,a、b为t2中的两列,“t1.a = any(values(t2.ba,(t2.b))”等价于“t1.a = t2.a or t1.a = t2.b”。
因此join-condition实质上是一个不等式,这种不等值的join操作必须走nestloop,对应执行计划如下:
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------
Nested Loop (cost=0.00..138614.38 rows=2309100 width=16) (actual time=0.152..19225.483 rows=1000 loops=1)
Join Filter: (SubPlan 1)
Rows Removed by Join Filter: 999000
-> Seq Scan on test1 t1 (cost=0.00..31.49 rows=2149 width=8) (actual time=0.021..3.309 rows=1000 loops=1)
-> Materialize (cost=0.00..42.23 rows=2149 width=8) (actual time=0.331..1265.810 rows=1000000 loops=1000)
-> Seq Scan on test2 t2 (cost=0.00..31.49 rows=2149 width=8) (actual time=0.013..0.268 rows=1000 loops=1)
SubPlan 1
-> Values Scan on "*VALUES*" (cost=0.00..0.03 rows=2 width=4) (actual time=2890.741..7372.739 rows=1999000 loops=1000000)
Total runtime: 19227.328 ms
(9 rows)
279.2 优化说明
测试发现由于两表结果集过大,导致nestloop耗时过长,超过一小时未返回结果,因此性能优化的关键是消除nestloop,让join走更高效的hashjoin。从语义等价的角度消除any-clause,SQL改写如下:
SELECT
*
FROM (
SELECT * FROM test1 t1, test2 t2 WHERE t1.a = t2.a
UNION
SELECT * FROM test1 t1, test2 t2 WHERE t1.a = t2.b
);
优化后的SQL查询由两个等值join的子查询构成,而每个子查询都可以走更适合此场景的hashjoin。优化后的执行计划如下
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------
HashAggregate (cost=1634.99..2096.81 rows=46182 width=16) (actual time=6.369..6.772 rows=1000 loops=1)
Group By Key: t1.a, t1.b, t2.a, t2.b
-> Append (cost=58.35..1173.17 rows=46182 width=16) (actual time=0.833..3.414 rows=2000 loops=1)
-> Hash Join (cost=58.35..355.67 rows=23091 width=16) (actual time=0.832..1.590 rows=1000 loops=1)
Hash Cond: (t1.a = t2.a)
-> Seq Scan on test1 t1 (cost=0.00..31.49 rows=2149 width=8) (actual time=0.015..0.156 rows=1000 loops=1)
-> Hash (cost=31.49..31.49 rows=2149 width=8) (actual time=0.531..0.531 rows=1000 loops=1)
Buckets: 32768 Batches: 1 Memory Usage: 40kB
-> Seq Scan on test2 t2 (cost=0.00..31.49 rows=2149 width=8) (actual time=0.010..0.199 rows=1000 loops=1)
-> Hash Join (cost=58.35..355.67 rows=23091 width=16) (actual time=0.694..1.421 rows=1000 loops=1)
Hash Cond: (t1.a = t2.b)
-> Seq Scan on test1 t1 (cost=0.00..31.49 rows=2149 width=8) (actual time=0.010..0.160 rows=1000 loops=1)
-> Hash (cost=31.49..31.49 rows=2149 width=8) (actual time=0.524..0.524 rows=1000 loops=1)
Buckets: 32768 Batches: 1 Memory Usage: 40kB
-> Seq Scan on test2 t2 (cost=0.00..31.49 rows=2149 width=8) (actual time=0.008..0.177 rows=1000 loops=1)
Total runtime: 7.759 ms
(16 rows)
👍 点赞,你的认可是我创作的动力!
⭐️ 收藏,你的青睐是我努力的方向!
✏️ 评论,你的意见是我进步的财富!