[numpy] vectorizing random.choice()

Why is numpy.random.choice so slow?

The take-home message is that vectorizing or parallel computing is very well implemented in numpy. Do take advantage of this!

  • Instead of
import numpy as np
for i in range(10000):
    print( np.random.choice(a=np.arrange(10)) )
  • do something like
import numpy as np
for i in np.random.choice(a=np.arrange(10), size=10000, replace=True):
    print(i)
  • This would save you more than 10000x time
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容