《机器学习》— 第3章 线性模型

1. 基本形式

给定由d个属性描述的示例 x = (x1;x2;...;xd),其中xi是x在第i个属性上的取值

线性模型
线性模型的向量形式

其中 w = (w1;w2;...;wd)。

线性模型的特点:形式简单,易于建模,由于w直观的表达了各属性在预测中的重要性,因此有很好的可解释性。

例如:在西瓜问题中学得下面的线性模型,则可以直观的看出,其中根蒂最重要,敲声比色泽更重要。

西瓜问题的线性模型

许多功能更为强大的非线性模型可在线性模型的基础上通过引入层级结果或高维映射得到。

2. 线性回归

线性回归试图学得一个线性模型以尽可能准确的预测实值输出标记

离散属性

1)若属性值间存在“序”关系,则可以通过连续化将其转换为连续值

例如:二值属性“身高”的取值 “高”、“矮” 可转化为{1.0, 0.0},三值属性“身高”的取值 “高”、“中”、“低” 可转化为{1.0, 0.5, 0.0}

2)若属性值间不存在“序”关系,则通常转化为k维向量

例如:属性“瓜类”的取值“西瓜”、“南瓜”、“黄瓜” 可转化为(0,0,1), (0,1,0), (1,0,0)

均方误差的几何意义对应了常用的欧几里得距离

最小二乘法】:基于均方误差最小化来进行模型求解的方法

输入属性的数目只有一个的情形:

线性回归


均方误差
对w 和 b求导

令式(3.5)和(3.6)为0可得到w和b最优解的闭式解


w最优解的闭式解
b最优解的闭式解

更一般的情形,样本由d个属性描述


多元线性回归


3. 对数几率回归

4. 线性判别分析

5. 多分类学习

6. 类别不平衡问题

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容