873. 最长的斐波那契子序列的长度 : 经典序列 DP 运用题

题目描述

这是 LeetCode 上的 873. 最长的斐波那契子序列的长度 ,难度为 中等

Tag : 「序列 DP」、「哈希表」、「动态规划」

如果序列 X_1, X_2, ..., X_n 满足下列条件,就说它是 斐波那契式 的:

  • n >= 3
  • 对于所有 i + 2 <= n,都有 X_i + X_{i+1} = X_{i+2}

给定一个严格递增的正整数数组形成序列 arr,找到 arr 中最长的斐波那契式的子序列的长度。如果一个不存在,返回 0

(回想一下,子序列是从原序列 arr 中派生出来的,它从 arr 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8][3, 4, 5, 6, 7, 8] 的一个子序列)

示例 1:

输入: arr = [1,2,3,4,5,6,7,8]

输出: 5

解释: 最长的斐波那契式子序列为 [1,2,3,5,8] 。

示例 2:

输入: arr = [1,3,7,11,12,14,18]

输出: 3

解释: 最长的斐波那契式子序列有 [1,11,12]、[3,11,14] 以及 [7,11,18] 。

提示:

  • 3 <= arr.length <= 1000
  • 1 <= arr[i] < arr[i + 1] <= 10^9

序列 DP

定义 f[i][j] 为使用 arr[i] 为斐波那契数列的最后一位,使用 arr[j] 为倒数第二位(即 arr[i] 的前一位)时的最长数列长度。

不失一般性考虑 f[i][j] 该如何计算,首先根据斐波那契数列的定义,我们可以直接算得 arr[j] 前一位的值为 arr[i] - arr[j],而快速得知 arr[i] - arr[j] 值的坐标 t,可以利用 arr 的严格单调递增性质,使用「哈希表」对坐标进行转存,若坐标 t 存在,并且符合 t < j,说明此时至少凑成了长度为 3 的斐波那契数列,同时结合状态定义,可以使用 f[t][j] 来更新 f[i][j],即有状态转移方程:

f[i][j] = \max(3, f[j][t] + 1)

同时,当我们「从小到大」枚举 i,并且「从大到小」枚举 j 时,我们可以进行如下的剪枝操作:

  • 可行性剪枝:当出现 arr[i] - arr[j] >= arr[j],说明即使存在值为 arr[i] - arr[j] 的下标 t,根据 arr 单调递增性质,也不满足 t < j < i 的要求,且继续枚举更小的 j,仍然有 arr[i] - arr[j] >= arr[j],仍不合法,直接 break 掉当前枚举 j 的搜索分支;
  • 最优性剪枝:假设当前最大长度为 ans,只有当 j + 2 > ans,我们才有必要往下搜索,j + 2 的含义为以 arr[j] 为斐波那契数列倒数第二个数时的理论最大长度。

代码:

class Solution {
    public int lenLongestFibSubseq(int[] arr) {
        int n = arr.length, ans = 0;
        Map<Integer, Integer> map = new HashMap<>();
        for (int i = 0; i < n; i++) map.put(arr[i], i);
        int[][] f = new int[n][n];
        for (int i = 0; i < n; i++) {
            for (int j = i - 1; j >= 0 && j + 2 > ans; j--) {
                if (arr[i] - arr[j] >= arr[j]) break;
                int t = map.getOrDefault(arr[i] - arr[j], -1);
                if (t == -1) continue;
                f[i][j] = Math.max(3, f[j][t] + 1);
                ans = Math.max(ans, f[i][j]);
            }
        }
        return ans;
    }
}
  • 时间复杂度:存入哈希表复杂度为 O(n)DP 过程复杂度为 O(n^2)。整体复杂度为 O(n^2)
  • 空间复杂度:O(n^2)

最后

这是我们「刷穿 LeetCode」系列文章的第 No.873 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。

在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。

为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:https://github.com/SharingSource/LogicStack-LeetCode

在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。

更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉

本文由mdnice多平台发布

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353

推荐阅读更多精彩内容