线性表(单项链表)
在C用struct实现链表
- 创建 intList,开辟内存空间,创建next下一个节点为null,如果开辟的地址为null返回错误
- 增加:找到要插入的节点,创建一个新的struct,然后插入List里将第一个list的Next指向插入的struct
- 查找:传入list,查找需要index,返回elem指针
- 删除:找到需要删除的index,把指向上一个指针指向下一个,释放内存
- 打印:直接循环链表输出
- 清空,就是一个一个的删除
- 前插法:创建一个指针结构体,然后一步一步插入
- 记得每次开辟空间之后释放
#include <stdio.h>
#include "string.h"
#include "ctype.h"
#include "stdlib.h"
#include "math.h"
#include "time.h"
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define OK 1
#define MAXSIZE 20 /* 存储空间初始分配量 */
typedef int Status;/* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int ElemType;/* ElemType类型根据实际情况而定,这里假设为int */
//定义结点
typedef struct Node{
ElemType data;
struct Node *next;
}Node;
typedef struct Node * LinkList;
//2.1 初始化单链表线性表
Status InitList(LinkList *L){
//产生头结点,并使用L指向此头结点
*L = (LinkList)malloc(sizeof(Node));
//存储空间分配失败
if(*L == NULL) return ERROR;
//将头结点的指针域置空
(*L)->next = NULL;
return OK;
}
//2.2 单链表插入
/*
初始条件:顺序线性表L已存在,1≤i≤ListLength(L);
操作结果:在L中第i个位置之后插入新的数据元素e,L的长度加1;
*/
Status ListInsert(LinkList *L,int i,ElemType e){
int j;
LinkList p,s;
p = *L;
j = 1;
//寻找第i-1个结点
while (p && j<i) {
p = p->next;
++j;
}
//第i个元素不存在
if(!p || j>i) return ERROR;
//生成新结点s
s = (LinkList)malloc(sizeof(Node));
//将e赋值给s的数值域
s->data = e;
//将p的后继结点赋值给s的后继
s->next = p->next;
//将s赋值给p的后继
p->next = s;
return OK;
}
//2.3 单链表取值
/*
初始条件: 顺序线性表L已存在,1≤i≤ListLength(L);
操作结果:用e返回L中第i个数据元素的值
*/
Status GetElem(LinkList L,int i,ElemType *e){
//j: 计数.
int j;
//声明结点p;
LinkList p;
//将结点p 指向链表L的第一个结点;
p = L->next;
//j计算=1;
j = 1;
//p不为空,且计算j不等于i,则循环继续
while (p && j<i) {
//p指向下一个结点
p = p->next;
++j;
}
//如果p为空或者j>i,则返回error
if(!p || j > i) return ERROR;
//e = p所指的结点的data
*e = p->data;
return OK;
}
//2.4 单链表删除元素
/*
初始条件:顺序线性表L已存在,1≤i≤ListLength(L)
操作结果:删除L的第i个数据元素,并用e返回其值,L的长度减1
*/
Status ListDelete(LinkList *L,int i,ElemType *e){
int j;
LinkList p,q;
p = (*L)->next;
j = 1;
//查找第i-1个结点,p指向该结点
while (p->next && j<(i-1)) {
p = p->next;
++j;
}
//当i>n 或者 i<1 时,删除位置不合理
if (!(p->next) || (j>i-1)) return ERROR;
//q指向要删除的结点
q = p->next;
//将q的后继赋值给p的后继
p->next = q->next;
//将q结点中的数据给e
*e = q->data;
//让系统回收此结点,释放内存;
free(q);
return OK;
}
/* 初始条件:顺序线性表L已存在 */
/* 操作结果:依次对L的每个数据元素输出 */
Status ListTraverse(LinkList L)
{
LinkList p=L->next;
while(p)
{
printf("%d\n",p->data);
p=p->next;
}
printf("\n");
return OK;
}
/* 初始条件:顺序线性表L已存在。操作结果:将L重置为空表 */
Status ClearList(LinkList *L)
{
LinkList p,q;
p=(*L)->next; /* p指向第一个结点 */
while(p) /* 没到表尾 */
{
q=p->next;
free(p);
p=q;
}
(*L)->next=NULL; /* 头结点指针域为空 */
return OK;
}
//3.1 单链表前插入法
/* 随机产生n个元素值,建立带表头结点的单链线性表L(前插法)*/
void CreateListHead(LinkList *L, int n){
LinkList p;
//建立1个带头结点的单链表
*L = (LinkList)malloc(sizeof(Node));
(*L)->next = NULL;
//循环前插入随机数据
for(int i = 0; i < n;i++)
{
//生成新结点
p = (LinkList)malloc(sizeof(Node));
//i赋值给新结点的data
p->data = i;
//p->next = 头结点的L->next
p->next = (*L)->next;
//将结点P插入到头结点之后;
(*L)->next = p;
}
}
//3.2 单链表后插入法
/* 随机产生n个元素值,建立带表头结点的单链线性表L(后插法)*/
void CreateListTail(LinkList *L, int n){
LinkList p,r;
//建立1个带头结点的单链表
*L = (LinkList)malloc(sizeof(Node));
//r指向尾部的结点
r = *L;
for (int i=0; i<n; i++) {
//生成新结点
p = (Node *)malloc(sizeof(Node));
p->data = i;
//将表尾终端结点的指针指向新结点
r->next = p;
//将当前的新结点定义为表尾终端结点
r = p;
}
//将尾指针的next = null
r->next = NULL;
}
int main(int argc, const char * argv[]) {
// insert code here...
printf("Hello, World!\n");
Status iStatus;
LinkList L1,L;
struct Node *L2;
ElemType e;
// L1 =(LinkList) malloc(sizeof(Node));
// L2 =(LinkList) malloc(sizeof(Node));
//
// L1->data = 1;
// L2->data = 2;
// printf("L1.data=%d,L2.data=%d\n",L1->data,L2->data);
//2.1 单链表初始化
iStatus = InitList(&L);
printf("L 是否初始化成功?(0:失败,1:成功) %d\n",iStatus);
//2.2 单链表插入数据
for(int j = 1;j<=10;j++)
{
iStatus = ListInsert(&L, 1, j);
}
printf("L 插入后\n");
ListTraverse(L);
//2.3 单链表获取元素
GetElem(L,5,&e);
printf("第5个元素的值为:%d\n",e);
//2.4 删除第5个元素
iStatus = ListDelete(&L, 5, &e);
printf("删除第5个元素值为:%d\n",e);
ListTraverse(L);
//3.1 前插法整理创建链表L
iStatus = ClearList(&L);
CreateListHead(&L, 20);
printf("整理创建L的元素(前插法):\n");
ListTraverse(L);
//3.2 后插法整理创建链表L
iStatus = ClearList(&L);
CreateListTail(&L, 20);
printf("整理创建L的元素(后插法):\n");
ListTraverse(L);
}