淘宝用户行为分析-探索性分析EDA

背景介绍

淘宝是中国深受欢迎的电商平台,经常网购的人少不了逛逛淘宝,随便看看有什么想买的或者有目的想买什么,在逛淘宝的过程中,我们会留下足迹。通过这些足迹,也就是用户的行为,我们可以对这些行为进行分析挖掘。

使用的工具是Python,主要用到了Numpy,Pandas、Matplotlib及Msno这几个包。

数据来源于阿里云天池:https://tianchi.aliyun.com/dataset/dataDetail?dataId=46

1 提出问题

本文主要围绕这几个点展开:

1.漏斗模型用户行为分析

2.平台用户使用情况分析

3.时间维度用户行为分析

4.RFM模型用户价值分析

5.商品销售情况分析

6.商品销售类目分析

2 数据读取与数据探索

2.1 数据说明

数据集包含了2014年11月18日至2014年12月18日之间,有行为的约100万随机用户的所有行为(行为包括点击、购买、加购、喜欢)。

数据主要包括5个字段,用户ID,商品ID,商品类目ID,行为类型,时间戳。一共有12256906条记录。

2.2 数据读取

总共的数据有1亿左右,虽然pandas可以处理这么多的数据,但是电脑配置不够,所以这里只取了1200多万条数据。使用pandas读取数据只需要几秒钟的时间,Excel大半天都打不开。

2.3 数据探索

查看数据信息

1200多万的数据大小有561.1M,要是全部数据大小差不多有4G

查看是否有缺失值

user_geohash 缺失值过多,需做剔除处理

3 数据清洗

3.1 删除重复值

3.2 处理缺失值

3.3 数据一致性转换

4 数据分析

4.1 漏斗模型用户行为分析

a.上述分析说明,需要优化商品的推荐机制,优化用户搜索商品的效率;

b.提升用户从点击到收藏和加入购物车这一环节的转化率,这样才能最终提升用户购买的比例。

4.2 平台用户使用情况分析

4.3 时间维度用户行为分析

可以发现在双十二当天访问量达到顶峰,可以利用这个巨大的流量优势,提升用户购买的几率。

分别分析浏览和其他三种行为在一天的变化情况,可以发现:

a.用户从0点到6点处于一个休息状态,而从6点开始,到10点活跃的人数越来越多,10点达到了一个巅峰,然后又逐渐回落,预测是用户起床上班,利用路上通勤时间进行浏览以及购买,而到了上班时间,则只能抽空购物;

b.晚上6点到12点用户数量又开始激增,成交率也增加,证明用户下班,吃饭等等有较多的空闲时间进行购物了,22点之后浏览慢慢下降,是准备要休息了。

在用户的空闲时间安排营销活动,比如早上通勤时间,中午吃饭时间,晚上6-10点,能够提升用户成交率。

4.4 RFM模型用户价值分析

最近一次消费 (Recency)

消费频率 (Frequency)

消费金额 (Monetary)

a.重要价值用户是优质客户,可以有针对性地给这类客户提供VIP服务,比如现在的淘宝VIP会员卡等等;

b.重要挽留客户占比也很大,他们消费时间间隔较远,并且消费频次低,需要主动联系客户,调查清楚哪里出现了问题,比如通过短信,邮件,APP推送等唤醒客户;

c.重要保持客户,消费时间间隔较远,但是消费频次高,有可能就是需要买东西的时候,就高频购买,不需要就不再购物,对于这类客户,需要主动联系,了解客户的需求,及时满足这类用户的需求(提供优惠券促使消费);

d.重要发展客户,消费频次低,我们需要提升他的消费频率,可以通过优惠券叠加等活动来刺激消费。

4.5 商品销售情况分析

大量商品只被购买一次

用户浏览的商品和最终购买的商品存在着很大的差异,我们需要优化推荐系统,让用户真正找到自己想买的商品,将浏览量转换为购买量。

从浏览到加购/收藏的转化率较低。

收藏之后购买的高于加入购物车之后被购买的转化率。

a.收藏是比加购有更高转化率的途径,可以针对收藏夹的商品发放优惠券,促使转化;

b.用户收藏和加入购物车之后的购买率达到了35.8%,说明商品只要被用户喜欢和加入购物车,那就有相当大的几率被购买,所以我们应该采取相应措施,比如让客户去收藏和加入购物车,这样能够增大转化率。

4.6 商品销售类目分析

a.可以尝试将销量较低的商品和销量较高的商品捆绑销售,并且优化商品的展示,将畅销类的商品和非畅销品展示在一起,提升商品购买转化率;

b.优化商品的推荐算法,将流量更多地聚焦于畅销的商品,打造爆款的产品,并利用爆款产品带动整体商品类目的销售。

5 结论

1.需要优化商品的推荐机制,优化用户搜索商品的效率,提升用户从点击到收藏和加入购物车这一环节的转化率,这样才能最终提升用户购买的比例;

2.有过购买行为的用户占总用户的比例为88.8%,需要采取措施引流;

3.双十二当天访问量达到顶峰,可以利用这个巨大的流量优势,提升用户购买的几率。在用户的空闲时间安排营销活动,比如早上通勤时间,中午吃饭时间,晚上6-10点,能够提升用户成交率;

4.大量商品只被购买一次,用户浏览的商品和最终购买的商品存在着很大的差异,我们需要优化推荐系统,让用户真正找到自己想买的商品,将浏览量转换为购买量;

5.收藏是比加购有更高转化率的途径,可以针对收藏夹的商品发放优惠券,促使转化。用户收藏和加入购物车之后的购买率达到了35.8%,说明商品只要被用户喜欢和加入购物车,那就有相当大的几率被购买,所以我们应该采取相应措施,比如让客户去收藏和加入购物车,这样能够增大转化率;

6.可以尝试将销量较低的商品和销量较高的商品捆绑销售,并且优化商品的展示,将畅销类的商品和非畅销品展示在一起,提升商品购买转化率。优化商品的推荐算法,将流量更多地聚焦于畅销的商品,打造爆款的产品,并利用爆款产品带动整体商品类目的销售。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,928评论 6 509
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,748评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,282评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,065评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,101评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,855评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,521评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,414评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,931评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,053评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,191评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,873评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,529评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,074评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,188评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,491评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,173评论 2 357