Java中的阻塞队列

Java中的阻塞队列

1. 什么是阻塞队列

阻塞队列是支持两个附加操作的队列。这两个附加操作就是阻塞式的插入和移除方法。

  1. 支持阻塞的插入方法:当队列满时,队列会阻塞插入元素的线程,直到队列不满;
  2. 支持阻塞的移除方法:当队列为空时,队列会阻塞获取元素的线程,直到队列非空。

在阻塞队列不可用时,这两个附加操作提供了4种处理方式:

抛出异常 返回特殊值 一直阻塞 超时退出
插入 add(e) offer(e) put(e) offer(e, time, unit)
移除 remove() poll() take() poll(time, unit)
检查 element() peek() 不可用 不可用

下面,解释一下这四种情况具体如何处理:

  • 抛出异常:队列满时,再次插入会抛出IllegalStateException(Queue full)异常。队列空时,再次获取元素会抛出NoSuchElementException异常;
  • 返回特殊值:当往队列插入元素时,会返回元素是否插入成功,成功返回true。如果是移除方法,则是从队列里取出一个元素,如果没有返回null;
  • 一直阻塞:队列满时,如果生产者线程继续put元素,队列就会一直阻塞生产者线程,直到队列可用或者响应中断退出。当队列为空时,如果消费者线程继续take元素,那么队列会阻塞消费者线程直到队列不为空;
  • 超时退出:阻塞队列满时,如果生产者线程往队列里插入元素,队列会阻塞生产者线程一段时间,如果超出了这个时间,生产者线程就会退出。

2. Java里面的阻塞队列

JDK7提供了7个阻塞队列。

2.1 ArrayBlockingQueue

一个由数组结构组成的有界阻塞队列。按照FIFO原则对元素排序。默认情况下不保证线程公平的访问队列,即不保证先阻塞的线程先访问队列。可以通过构造器传入参数构建一个公平的阻塞队列。访问者的公平性是通过可重入锁实现的。

2.2 LinkedBlockingQueue

一个由链表实现的有界阻塞队列。默认最大长度Integer.MAX_VALUE。按照FIFO对元素进行排序。

2.3 PriorityBlockingQueue

一个支持优先级的无界阻塞队列,默认情况下采用自然排序升序排列,也可以自定义排序规则。

2.4 DelayQueue

一个支持延时获取元素的无界阻塞队列。队列使用PriorityQueue实现。

2.5 SynchronousQueue

不存储元素的阻塞队列。每一个put操作必须等待一个take操作,否则不能添加元素。支持公平访问队列。

2.6 LinkedTransferQueue

由链表结构组成的无界阻塞队列,比其他阻塞队列多了一个tryTransfer和transfer方法。

2.7 LinkedBlockingDeque

链表结构组成的双向阻塞队列。

3. ArrayBlockingQueue实现原理

阻塞队列是通过通知模式实现生产者和消费者之间的通信的,当生产者向一个满的队列put数据的时候会被阻塞,当消费者消费了一个队列元素后,会通知生产者当前队列可用。看一下源码:

构造器:

final Object[] items;  // 存放队列元素的数组
private final Condition notEmpty;  // 等待take的Condition
private final Condition notFull;  // 等待put的Condition
final ReentrantLock lock;  // 可重入锁

public ArrayBlockingQueue(int capacity) {
  this(capacity, false);
}
public ArrayBlockingQueue(int capacity, boolean fair) {
  if (capacity <= 0)
    throw new IllegalArgumentException();
  this.items = new Object[capacity];  // 初始化存放队列的数组
  lock = new ReentrantLock(fair);  // fair:true 公平锁  fair:false 非公平锁(默认)
  notEmpty = lock.newCondition();
  notFull =  lock.newCondition();
}

存储元素

public void put(E e) throws InterruptedException {
  checkNotNull(e);
  final ReentrantLock lock = this.lock;
  lock.lockInterruptibly();  // 如果当前线程没有被打断,则获取锁
  try {
    while (count == items.length)  // 如果当前队列已满,则阻塞生产者
      notFull.await();
    enqueue(e);  // 元素入队
  } finally {
    lock.unlock();
  }
}

private void enqueue(E x) {
  final Object[] items = this.items;
  items[putIndex] = x;
  if (++putIndex == items.length)
    putIndex = 0;
  count++;
  notEmpty.signal();  // 队列有元素了,通知消费者你可以来取了
}

取出元素

public E take() throws InterruptedException {
  final ReentrantLock lock = this.lock;
  lock.lockInterruptibly();  // 如果当前线程没有被打断,则获取锁
  try {
    while (count == 0)  // 如果当前队列已空,则阻塞消费者
      notEmpty.await();
    return dequeue();  // 元素出队
  } finally {
    lock.unlock();
  }
}

private E dequeue() {
  final Object[] items = this.items;
  @SuppressWarnings("unchecked")
  E x = (E) items[takeIndex];
  items[takeIndex] = null;
  if (++takeIndex == items.length)
    takeIndex = 0;
  count--;
  if (itrs != null)
    itrs.elementDequeued();
  notFull.signal();  // 刚取出了一个元素,队列肯定不为空,通知生产者你可以来放入元素了
  return x;
}

从源码可以看到生产者放入元素的时候,如果队列已满,则阻塞生产者放入元素,直到有消费者消费了队列元素就通知生产者可以放入了。同理,当消费者取出元素的时候,如果队列为空,则阻塞消费者,直到生产者放入了元素则通知消费者你可以继续取元素了。这是一个典型的通知模式

参考:

《Java并发编程的艺术》

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,324评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,356评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,328评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,147评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,160评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,115评论 1 296
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,025评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,867评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,307评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,528评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,688评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,409评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,001评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,657评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,811评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,685评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,573评论 2 353

推荐阅读更多精彩内容