Opinion mining and sentiment analysis

Neil Zhu,简书ID Not_GOD,University AI 创始人 & Chief Scientist,致力于推进世界人工智能化进程。制定并实施 UAI 中长期增长战略和目标,带领团队快速成长为人工智能领域最专业的力量。
作为行业领导者,他和UAI一起在2014年创建了TASA(中国最早的人工智能社团), DL Center(深度学习知识中心全球价值网络),AI growth(行业智库培训)等,为中国的人工智能人才建设输送了大量的血液和养分。此外,他还参与或者举办过各类国际性的人工智能峰会和活动,产生了巨大的影响力,书写了60万字的人工智能精品技术内容,生产翻译了全球第一本深度学习入门书《神经网络与深度学习》,生产的内容被大量的专业垂直公众号和媒体转载与连载。曾经受邀为国内顶尖大学制定人工智能学习规划和教授人工智能前沿课程,均受学生和老师好评。

Opinion mining and sentiment analysis: Motivation

现在我们的地图已经探索到了观点挖掘和情感分析,这是一项非常具有挑战性和有趣的问题。我们看看现在可以做到什么程度。

Paste_Image.png

Objective vs. Subjective Sensors

Paste_Image.png

如何找到或者说确定那个文档的观点呢?首先我们看看观点的定义

什么是观点 opinion?

Paste_Image.png

观点大概就是一个描述了观点持有人相信或者认定某事物的主观陈述(相对于客观陈述或者事实描述,不可以证明正确或者错误),而且相信或者认定本身也是依赖于文化、背景和上下文关系。

观点的表示

  • 基本表示
  • 观点持有者:是谁的观点?
  • 观点目标:是关于什么的观点?
  • 观点内容:观点本身是什么?
  • 增强的观点表示
  • 观点的上下文:在什么情境下(时间,位置),表示的观点?
  • 观点的情感:观点告诉我们关于观点持有者的感受(正面、反面)?

产品评论(显见持有者和目标)

稍微容易挖掘和分析

  • 基本表示
  • 观点持有者:是谁的观点? 评论者 X
  • 观点目标:是关于什么的观点? 产品:iPhone 6
  • 观点内容:观点本身是什么? 评论文本
  • 增强的观点表示
  • 观点的上下文:在什么情境下(时间,位置),表示的观点? Year = 2015
  • 观点的情感:观点告诉我们关于观点持有者的感受(正面、反面)? 正面

新闻中的语句(隐式持有者和目标)

Paste_Image.png

这个例子说明了观点目标和持有者都不是显见的,隐藏在文本中间,需要更深的NLP技术才能挖掘和分析

观点的变体

  • 观点持有者: Individual vs. group
  • 观点对象: One entity, a group of entities, one attribute of
    an entity, someone else’s opinion, etc.
  • 观点内容:
  • Surface variation: one sentence/phrase, a paragraph, a whole article
  • Sentiment/emotion variation: positive vs. negative, happy vs. sad,
    etc.
  • 观点上下文:
  • Simple context: Different time, location, etc.
  • Complex context: Potentially includes the entire discourse context of
    an opinion

文本中的不同类型的观点

Paste_Image.png

可以看到有如下几种类型:

  • 观测到的观点
  • 报告的观点
  • 作者的观点
  • 间接/推测的观点

观点挖掘的任务

Paste_Image.png

为何进行观点挖掘?

  • 决策支持
  • 帮助消费者选择产品或者服务
  • 帮着投票者决定投谁
  • 帮助制定新的规则
  • 理解人类
  • 帮助我们理解人们的偏好(从而更好地服务他们;优化搜索,推荐的效果)
  • 帮助我们进行广告(精准广告投放)
  • 志愿者调查(人类作为sensor;聚合观点)
  • 商务智能
  • 市场调研
  • 数据驱动的社会科学研究
  • 基于文本的预测中获得性能的提升
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,542评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,596评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,021评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,682评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,792评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,985评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,107评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,845评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,299评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,612评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,747评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,441评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,072评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,828评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,069评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,545评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,658评论 2 350

推荐阅读更多精彩内容