Spark 用代码实现求百分位数Percentile(Quentile)的方法

参考下文得到的启发

https://stackoverflow.com/questions/28805602/how-to-compute-percentiles-in-apache-spark

简单说明下分位数的定义

Scala求分位数的方法:

  /**
   * compute percentile from an unsorted Spark RDD
   * @param data: input data set of Long integers
   * @param tile: percentile to compute (eg. 85 percentile)
   * @return value of input data at the specified percentile
   */
  def computePercentile(data: RDD[Long], tile: Double): Double = {
    // NIST method; data to be sorted in ascending order
    val r = data.sortBy(x => x)
    val c = r.count()
    if (c == 1) r.first()
    else {
      val n = (tile / 100d) * (c + 1d)
      val k = math.floor(n).toLong
      val d = n - k
      if (k <= 0) r.first()
      else {
        val index = r.zipWithIndex().map(_.swap)
        val last = c
        if (k >= c) {
          index.lookup(last - 1).head
        } else {
          index.lookup(k - 1).head + d * (index.lookup(k).head - index.lookup(k - 1).head)
        }
      }
    }
  }

请注意,事例代码中求分位数的方式,是求的加权分位数,关键代码如下:

在实际工作中,可以自行改写(算术平均值)。

===================================

下面的重点来了,如何求出Spark dataframe中某一列的分位数?

思路: DataFrame得出某一列,转为Rdd,调用刚才写的函数即可。

在写此贴之前,本人曾用sparksql的方式实现了分位数的功能,但因为执行效率不高,在这里就不展示此种方法了。

下面我列出我认为比较关键的代码,仅供参考:

import org.apache.spark.sql.Row
import com.google.gson.Gson
import org.apache.spark.sql.Dataset
import org.apache.ibatis.jdbc.SQL
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.functions._
 
//initDF是一个DataFrame
//求出initDF的price列,并转为Rdd
//brand是品牌名称,需要自己去定义,或者从某个列表中获取
var price = initDF.select("price").filter($"brand_name" === brand)
                  .rdd.map(x => x(0).toString().toDouble)
 
//compute Percentile 
               
var q1 = computePercentile(price, 25)
               
var q2 = computePercentile(price, 50)
               
var q3 = computePercentile(price, 75)
 
 
//computePercentile方法,我做了些许改写,求的是算术平均分位数 
    def computePercentile(data: RDD[Double], tile: Double): Double = {
        // NIST method; data to be sorted in ascending order
        val r = data.sortBy(x => x)
        val c = r.count()
        if (c < 4) {0}
        else {
          val n = (tile / 100d) * c
          val k = math.floor(n).toLong
          val d = math.ceil(n).toLong
          val index = r.zipWithIndex().map(_.swap)
          val last = c
          
          if (k >= c) {
              index.lookup(last - 1).head
            } else {
              (index.lookup(k - 1).head + index.lookup(d-1).head)/2
            }
          }
        }

得到你想要的分位数后,你就可以和其他变量组合在一起,愉快的玩耍,生成任意你想要的数据格式(DataFrame,json等等)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,997评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,603评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,359评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,309评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,346评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,258评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,122评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,970评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,403评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,596评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,769评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,464评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,075评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,705评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,848评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,831评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,678评论 2 354

推荐阅读更多精彩内容