BERT预训练模型

bert之前的语言模型

n-gram语言模型:根据前面n个词预测当前词,它的缺点是,一般只能取1-2,n越大计算成本越高,这就使得它关注的信息是非常局限的。

预训练语言模型:wordvec\glove\fasttext。wordvec是根据周围词预测当前词或当前词预测周围词,相比于n-gram,它关注了下文,但它仍然是关注局部信息。glove通过构建词频共现矩阵来训练词向量,将全局信息融入到词向量中。fasttext仍然是局部的,只是他分词是基于subword,对于oov词相对友好。三者共同的缺点是,无法解决一词多义问题。

高级语言模型:elmo\GPT,elmo采用1层静态向量+2层单向LSTM提取特征,并且能够解决一词多义,elmo是一个双向语言模型,但实际上是两个单向语言模型(方向相反)的拼接,这种融合特征的能力比 BERT 一体化融合特征方式弱。GPT采用Transformer的decoder单元提取特征,同样也可以解决一词多义问题,但GPT是单向的。所以,对上下文信息的融合,二者能力还不够。

bert的产生

bert是双向语言模型,句子没有shift_mask操作,所以是完整的上下文环境,证实了双向语言模型对文本特征表示的重要性。bert同时证实了预训练模型能够简化很多繁重任务的网络结构,在11个nlp任务上都有显著提升。

bert的架构

左图是bert
tranformer左侧的encoder单元

bert采用Transformer的encoder单元提取特征,encoder中包含几个重要的机制:self-attention、muti-head attention、position encoding。

bert分为bert_base和bert_large大小两个模型,bert_base采用了12个encoder单元,768维隐藏层,12个attention。bert_base采用了24个encoder单元,1024维隐藏层,16个attention。

bert的输入

input:单句或句对组合,有[cls]作为句子开头的标记,[sep]作为句子分隔和结束的标记。

token embedding:对于英文采用WordPiece embeddings,也就是一个单词会被拆成词根词缀的,比如图中的playing被拆成了play和ing两个token;对于中文,就是单子拆分。

segment embedding:相邻句子采用不同的标志分隔,形如111111111100000011111100000。

position embedding:在transformer中,单词之间是没有先后顺序的,而语言本身是有序的,所以采用采用正余弦函数来计算每个单词的先后顺序,这种方式有点勉强,算是折中方式。

预训练任务一:Mask LM

前面讲到elmo也是双向语言模型,它是采用bi-LSTM来提取特征,如下:

比如一句话:‘北京是中国的首都’,在LSTM中从左往右,预测‘中国’的时候只能看到‘北京’,从右往左,预测‘中国’的时候只能看到‘首都’,然后将两个lstm的输出做拼接来达到上下文信息融合的目的。其实是没有完全做到双向,只是以结构的改变来接近双向语言模型。真正的双向是预测‘中国’的时候,需要同时看到‘北京’和‘首都’。由此,mask LM产生了。

mask LM的原理是将‘中国’遮盖住,同时用‘北京’和‘首都’来预测‘中国’。‘北京’和‘首都’联系起来语言模型很容易联想到就是‘中国’啦。这个思想和wordvec的CBOW模型如出一辙,就是用周围词预测当前词,只是这个思想放在厉害的transformer中,便能大显其能。

BERT的mask方式:在选择mask的15%的词当中,80%情况下使用mask掉这个词,10%情况下采用一个任意词替换,剩余10%情况下保持原词汇不变。这样mask的优点是什么?

1)被随机选择15%的词当中以10%的概率用任意词替换去预测正确的词,相当于文本纠错任务,为BERT模型赋予了一定的文本纠错能力;

2)被随机选择15%的词当中以10%的概率保持不变,缓解了finetune时候与预训练时候输入不匹配的问题(预训练时候输入句子当中有mask,而finetune时候输入是完整无缺的句子,即为输入不匹配问题)。

预训练任务二:NSP (Next Sentence Prediction )

在Mask LM任务中,模型学到了词与词之间的关系,而NSP任务是要模型学到句子与句子之间的关系,比如问答、推理等。它将训练语料分为两类,一是将50%语料构建成正常语序的句子对,比如A-B句子对,B就是A的实际下一个句子,并做标记为isnext;二是将50%语料构建成非正常语序句子对,B是来自语料库的随机句子,并做标记为notnext。然后通过对句子对的关系做分类,预测B到底是不是A句子的下一个句子,使模型具有句子级别的识别能力。

Fine-tuning

微调的目的在于我们的任务与bert预训练任务是不一致的,但是bert是非常好的语言模型,他具备提取词法和句法的强大能力。将bert嵌入到我们的网络结构中,能够简化在语言模型方面的复杂结构。只需要将输入做成和bert适配的格式就行,而在bert后面接上全连接、CNN等简单模型进行训练,就能够使训练得到一个比较好的效果。

BERT & GPT

GPT 和 BERT 都采用Transformer,Transformer 是encoder-decoder 结构,GPT 的单向语言模型采用 decoder 部分,decoder 的部分见到的都是不完整的句子;BERT 的双向语言模型则采用 encoder 部分,采用了完整句子。他俩最主要的区别在于BERT是双向语言模型,更适合文本分类等任务,GPT是单向语言模型,更适合生成式任务。

bert每一层学到什么

1)低层网络捕捉了短语级别的结构信息

2)表层信息特征在底层网络(3,4),句法信息特征在中间层网络(6~9),语义信息特征在高层网络。(9~12)

3)主谓一致表现在中间层网络(8,9)

BERT的变体

1)ROBERTA

•静态mask->动态mask:在bert中每一个epoch被mask的是相同的词,而ROBERTA在每一个epoch结束,重新随机15%的词,使不同的词被mask。

•去除句对NSP任务,输入连续多个句子:在bert中最长是512个token,输入单句或者句对不容易把512个token占满,ROBERTA输入更多句子占满512个坑位。

•训练使用更多数据 更大batch size 更长时间

2)ALBERT

•减少参数:词表 V 到隐层 H 的中间,插入一个小维度 E,即一个VxH的embedding变成两个VxE, ExH的两个fc。

•共享所有层的参数:Attention 和 FFN,在bert中每一层的Attention 和 FFN的参数是不一样的。

•SOP 替换 NSP:负样本换成了同一篇文章中的两个逆序的句子,bert中是A-->B和A-->随机,ALBERT中是A-->B,B-->A。

•BERT对MASK 15% 的词来预测。ALBERT 预测的是 n-gram 片段,包含更完整的语义信息。

•训练数据长度:90%取512,BERT90% 128

•对应BERT large:H:1024 ->4096  L:24->12  窄而深->宽而浅

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342