Seq2Seq 模型详解

Seq2Seq 是一种循环神经网络的变种,包括编码器 (Encoder) 和解码器 (Decoder) 两部分。Seq2Seq 是自然语言处理中的一种重要模型,可以用于机器翻译、对话系统、自动文摘。

1. RNN 结构及使用

RNN 结构

在之前的文章《循环神经网络 RNN、LSTM、GRU》中介绍了 RNN 模型,RNN 基本的模型如上图所示,每个神经元接受的输入包括:前一个神经元的隐藏层状态 h (用于记忆) 和当前的输入 x (当前信息)。神经元得到输入之后,会计算出新的隐藏状态 h 和输出 y,然后再传递到下一个神经元。因为隐藏状态 h 的存在,使得 RNN 具有一定的记忆功能。

针对不同任务,通常要对 RNN 模型结构进行少量的调整,根据输入和输出的数量,分为三种比较常见的结构:N vs N、1 vs N、N vs 1。

1.1 N vs N

N vs N 结构

上图是RNN 模型的一种 N vs N 结构,包含 N 个输入 x1, x2, ..., xN,和 N 个输出 y1, y2, ..., yN。N vs N 的结构中,输入和输出序列的长度是相等的,通常适合用于以下任务:

  • 词性标注
  • 训练语言模型,使用之前的词预测下一个词等

1.2 1 vs N

1 vs N 结构(1)

1 vs N 结构(2)

在 1 vs N 结构中,我们只有一个输入 x,和 N 个输出 y1, y2, ..., yN。可以有两种方式使用 1 vs N,第一种只将输入 x 传入第一个 RNN 神经元,第二种是将输入 x 传入所有的 RNN 神经元。1 vs N 结构适合用于以下任务:

  • 图像生成文字,输入 x 就是一张图片,输出就是一段图片的描述文字。
  • 根据音乐类别,生成对应的音乐。
  • 根据小说类别,生成相应的小说。

1.3 N vs 1

N vs 1 结构

在 N vs 1 结构中,我们有 N 个输入 x1, x2, ..., xN,和一个输出 y。N vs 1 结构适合用于以下任务:

  • 序列分类任务,一段语音、一段文字的类别,句子的情感分析。

2. Seq2Seq 模型

2.1 Seq2Seq 结构

上面的三种结构对于 RNN 的输入和输出个数都有一定的限制,但实际中很多任务的序列的长度是不固定的,例如机器翻译中,源语言、目标语言的句子长度不一样;对话系统中,问句和答案的句子长度不一样。

Seq2Seq 是一种重要的 RNN 模型,也称为 Encoder-Decoder 模型,可以理解为一种 N×M 的模型。模型包含两个部分:Encoder 用于编码序列的信息,将任意长度的序列信息编码到一个向量 c 里。而 Decoder 是解码器,解码器得到上下文信息向量 c 之后可以将信息解码,并输出为序列。Seq2Seq 模型结构有很多种,下面是几种比较常见的:

第一种

第一种 Seq2Seq 结构

第二种

第二种 Seq2Seq 结构

第三种

第三种 Seq2Seq 结构

2.2 编码器 Encoder

这三种 Seq2Seq 模型的主要区别在于 Decoder,他们的 Encoder 都是一样的。下图是 Encoder 部分,Encoder 的 RNN 接受输入 x,最终输出一个编码所有信息的上下文向量 c,中间的神经元没有输出。Decoder 主要传入的是上下文向量 c,然后解码出需要的信息。

Seq2Seq Encoder

从上图可以看到,Encoder 与一般的 RNN 区别不大,只是中间神经元没有输出。其中的上下文向量 c 可以采用多种方式进行计算。

Encoder 上下文向量 c

从公式可以看到,c 可以直接使用最后一个神经元的隐藏状态 hN 表示;也可以在最后一个神经元的隐藏状态上进行某种变换 hN 而得到,q 函数表示某种变换;也可以使用所有神经元的隐藏状态 h1, h2, ..., hN 计算得到。得到上下文向量 c 之后,需要传递到 Decoder。

2.3 解码器 Decoder

Decoder 有多种不同的结构,这里主要介绍三种。

第一种

第一种 Decoder 结构

第一种 Decoder 结构比较简单,将上下文向量 c 当成是 RNN 的初始隐藏状态,输入到 RNN 中,后续只接受上一个神经元的隐藏层状态 h' 而不接收其他的输入 x。第一种 Decoder 结构的隐藏层及输出的计算公式:

第一种 Decoder 结构隐藏层及输出层

第二种

第二种 Decoder 结构

第二种 Decoder 结构有了自己的初始隐藏层状态 h'0,不再把上下文向量 c 当成是 RNN 的初始隐藏状态,而是当成 RNN 每一个神经元的输入。可以看到在 Decoder 的每一个神经元都拥有相同的输入 c,这种 Decoder 的隐藏层及输出计算公式:

第二种 Decoder 结构隐藏层及输出层

第三种

第三种 Decoder 结构

第三种 Decoder 结构和第二种类似,但是在输入的部分多了上一个神经元的输出 y'。即每一个神经元的输入包括:上一个神经元的隐藏层向量 h',上一个神经元的输出 y',当前的输入 c (Encoder 编码的上下文向量)。对于第一个神经元的输入 y'0,通常是句子其实标志位的 embedding 向量。第三种 Decoder 的隐藏层及输出计算公式:

第三种 Decoder 结构隐藏层及输出层

3. Seq2Seq模型使用技巧

3.1 Teacher Forcing

Teacher Forcing 用于训练阶段,主要针对上面第三种 Decoder 模型来说的,第三种 Decoder 模型神经元的输入包括了上一个神经元的输出 y'。如果上一个神经元的输出是错误的,则下一个神经元的输出也很容易错误,导致错误会一直传递下去。

而 Teacher Forcing 可以在一定程度上缓解上面的问题,在训练 Seq2Seq 模型时,Decoder 的每一个神经元并非一定使用上一个神经元的输出,而是有一定的比例采用正确的序列作为输入。

举例说明,在翻译任务中,给定英文句子翻译为中文。"I have a cat" 翻译成 "我有一只猫",下图是不使用 Teacher Forcing 的 Seq2Seq

不使用 Teacher Forcing

如果使用 Teacher Forcing,则神经元直接使用正确的输出作为当前神经元的输入。

使用 Teacher Forcing

3.2 Attention

在 Seq2Seq 模型,Encoder 总是将源句子的所有信息编码到一个固定长度的上下文向量 c 中,然后在 Decoder 解码的过程中向量 c 都是不变的。这存在着不少缺陷:

  • 对于比较长的句子,很难用一个定长的向量 c 完全表示其意义。
  • RNN 存在长序列梯度消失的问题,只使用最后一个神经元得到的向量 c 效果不理想。
  • 与人类的注意力方式不同,即人类在阅读文章的时候,会把注意力放在当前的句子上。

Attention 即注意力机制,是一种将模型的注意力放在当前翻译单词上的一种机制。例如翻译 "I have a cat",翻译到 "我" 时,要将注意力放在源句子的 "I" 上,翻译到 "猫" 时要将注意力放在源句子的 "cat" 上。

使用了 Attention 后,Decoder 的输入就不是固定的上下文向量 c 了,而是会根据当前翻译的信息,计算当前的 c

Attention

Attention 需要保留 Encoder 每一个神经元的隐藏层向量 h,然后 Decoder 的第 t 个神经元要根据上一个神经元的隐藏层向量 h't-1 计算出当前状态与 Encoder 每一个神经元的相关性 et。et 是一个 N 维的向量 (Encoder 神经元个数为 N),若 et 的第 i 维越大,则说明当前节点与 Encoder 第 i 个神经元的相关性越大。et 的计算方法有很多种,即相关性系数的计算函数 a 有很多种:

Attention 相关性

上面得到相关性向量 et 后,需要进行归一化,使用 softmax 归一化。然后用归一化后的系数融合 Encoder 的多个隐藏层向量得到 Decoder 当前神经元的上下文向量 ct:

使用 Attention 计算上下文向量 c

3.3 beam search

beam search 方法不用于训练的过程,而是用在测试的。在每一个神经元中,我们都选取当前输出概率值最大的 top k 个输出传递到下一个神经元。下一个神经元分别用这 k 个输出,计算出 L 个单词的概率 (L 为词汇表大小),然后在 kL 个结果中得到 top k 个最大的输出,重复这一步骤。

4. Seq2Seq 总结

Seq2Seq 模型允许我们使用长度不同的输入和输出序列,适用范围相当广,可用于机器翻译,对话系统,阅读理解等场景。

Seq2Seq 模型使用时可以利用 Teacher Forceing,Attention,beam search 等方法优化。

参考文献

RNN神经网络模型的不同结构
Tensorflow中的Seq2Seq全家桶
Attention机制详解(一)——Seq2Seq中的Attention

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容