剖析大数据分析就业前景

  随着信息产业的迅猛发展,大数据分析行业的人才需求量也在逐渐扩大。现在我国的IT人才都比较稀缺,同时这个人才的数量不断的增加,不过大数据分析这个行业的人才确实是少,所以对于大数据分析的行业来说,市场的需求量还是挺大的。

  很多公司都有自己的IT部门,而IT部门需要对企业自身的数据进行比较,如果数据量比较大的话,就需要对数据库的管理做好准备,而大数据分析师不管在哪个岗位上来说,都是企业中重要的角色,因为大数据分析师能够通过数据分析对企业未来发展方向有一定的参考作用,所以这就说明大数据分析这个行业的优点就是就业范围广。

  一、大数据分析是什么?

  对于一大部分想转行做IT,做python的,都是冲着大数据分析来的,那你知道大数据分析的是啥吗?你知道大数据分析的岗位职能分配情况吗?

  如果这些都答不上来的话,那就别追风口,如果盲目的跟风,只会让你进来找不着北,到头来,浪费自己的时间和金钱,还的回去干老本行。

  大数据分析师的两种岗位定位:

  1、大数据科学家,Data Scientist,DS

  2、大数据工程师,Data Engineer,DE

  从这两个单词里,你就能看出端倪了,那接下来这两者的区别,以及工作内容划分是什么?AAA教育小编姐姐后面和大家分享一下,今天我们重点分析大数据分析就业前景:

  二、大数据分析就业前景

  当前大数据分析行业真的是人才稀缺吗?未来人才缺口150万,大数据分析人才最稀缺。先看大数据分析人才缺口有多大?

根据LinkedIn(领英)发布的《中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是当下中国互联网行业需求最旺盛的六类人才职位。其中大数据分析人才最为稀缺、供给指数最低。同时,大数据分析人才跳槽速度也最快,平均跳槽速度为19.8个月。而清华大学计算机系教授武永卫去年透露了一组数据:未来3-5年,中国需要180万数据人才,但目前只有约30万人。

  大数据行业未来会产能过剩吗?根据多年的行业经验提出了三个理由:1、不同机构间的数据还未真正流动起来,目前还只是数据“孤岛”;

2、完整的生态产业链还未形成,尽管通过行为数据分析已能够分辨出一个消费者的喜好,但从供应到购买的链条还没建成;

3、大数据分析人才仍然极度匮乏。基于数据归属,涉及大数据业务的公司其实有两类:一类是自身拥有数据的甲方公司,如亚马逊、阿里巴巴等;另一类是整合数据资源,提供大数据技术与应用服务的第三方公司。目前行业整合出现盈利问题的公司多集中在第三方服务商。对此,大数据分析团队表示,第三方服务商提供的更多的是技术或平台,大数据更多还是让甲方公司获益。大数据业务要产生规模效益,至少要具备三点:算法、计算平台以及数据本身。第三方大数据创业公司在算法上有一技之长,而计算能力实际上已经匀化了,传统企业如果用好了,和大数据创业公司没有区别,甚至计算能力更强,而数据获取方面,很多数据在传统行业内部并没有共享出来,第三方大数据公司获取这些数据是比较困难的,最后可能谁有数据,谁产生的价值更高,数据为王。

  第三方大数据公司获取这些数据是比较困难的,最后可能谁有数据,谁产生的价值更高。说白了,数据为王。经过市场的优胜劣汰,第三方服务领域会出现一些做得比较好的公司,其他公司可能被淘汰或转型做一些垂直行业应用。从社会来看,总的需求量一定是增加的,而对于供给侧,经过行业自然的洗牌,最终会集中在几家优秀的行业公司。

  现在大数据行业发展势头正猛,大数据人才必将成为市场紧缺型人才,发展前景好,薪资水平也水涨船高。大数据行业是目前平均收入最高的行业,其从业人员平均年薪已逾十万元,有经验的大数据工程师平均年薪一般在12万元以上。

  因为大数据分析人才稀缺,大数据分析从业者是技术性人才,然而高校培养出来的人才和企业所需的人才严重不符,导致大数据人才奇缺,因此一个熟练的大数据分析技术工程师,特别受用人单位的重视。所以职位高也就是一件正常的事情。

  其实很多人都认为大数据分析就是风口上的猪,等风停了,这头猪就重重的摔下来。其实并不是这样的,大数据分析工程师是通用性人才,其不受行业发展的限制,而且也不受年龄和体力的影响,就像医生、律师一样,年纪越大,经验越丰富,也就越值钱。

  大数据分析人才不但是核心人才,而且是通用人才,走到哪都不怕,所以哪个行业发展快,就可以去哪个行业,更大程度地提高了人才价值而降低了职业风险。

  一般从事信息产业的企业大都集中在高级写字楼内或国家级或省级软件科技园内。工作环境优越,生活设施完善,同行业人才聚集,有利于建立广阔的人脉,为自己的事业奠定稳固的基础。

  大数据分析三大就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。在此三大方向中,各自的基础岗位一般为大数据系统研发工程师、大数据应用开发工程师和数据分析师。从上文中我们可以看出,未来十年大数据行业都是热门的,也还会有更多的行业和岗位顺应大数据的发展而产生。各行业的生态产业链都将联系在一起,大数据的发展前景是非常大的,所以大数据分析培训就业在目前看来是非常靠谱的。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容