[R] 如何绘制各样本的pathway丰度热图?

前言

一般而言,我们做完pathway富集分析后,会做下气泡图或bar图来进行展示,这样实际上只考虑了富集因子和Pvalue。如果我们不关注这两个因素,而是在乎样本本身的pathway丰度呢?

对于KEGG热图绘制,大部分是做到KO层级,因为基因/蛋白和KO的绝大部分都是一对一的对应关系,十分方便地得到想要的结果。如果一定要做Pathway的丰度热图呢?一般的方法是将该通路中的基因/蛋白的丰度进行累加来表示该pathway的丰度。

好了,现在我们来计算并绘制热图吧。

数据处理

得到pathway富集分析结果文件一般是这样的:


image.png

Proteins字段中的基因/蛋白是用分号隔开的。

> colnames(path)
[1] "X.Pathway"       "Sample1..1113."  "Sample2..15327." "Pvalue"          "Pathway.ID"      "Level1"         
[7] "Level2"          "Proteins"        "KOs"  

除此之外,我们还需要一个基因表达矩阵:


image.png

这个数据有四组样本,每组3个重复,共12个样本。

我们的目标就是整理成这样的table,用来绘制热图:


image.png

从两个表可知,数据处理关键就是pathway中的蛋白丰度求和。把pathway中对应的各蛋白展开,再匹配到表达矩阵上,最后归并求和就好了,思路清晰了就动手吧。

library(tidyverse)
path2 <- path %>% dplyr::select(X.Pathway,Level1,Level2,Proteins)

#下面这一步最关键,dplyr中为我们提供了一个有用的函数unnest
path3 <- path2 %>% mutate(ProteinID = strsplit(Proteins, ";")) %>% unnest()
colnames(path3)[1] <- "Pathway"

#如果不熟悉,这一步也可用Map函数配合do.call来完成:
out <- do.call(rbind, Map(cbind, path2$X.Pathway,path2$Level1,path2$Level2,strsplit(path2$Proteins, ";")))
out <- as.data.frame(out)
colnames(out) <- colnames(path2)

处理后得到的结果是这样的:


image.png

Proteins列中的蛋白都一一和Pathway对应起来,后面就好办了,直接贴代码:

#sum scale
ibaq2 <- sweep(ibaq,2,apply(ibaq, 2, sum),FUN = "/")

#caculate each group mean value
group <- factor(rep(c("S01CC","S11SC","S12CC","S12SC"),each=3),levels = c("S11SC","S12SC","S12CC","S01CC"))
out <- apply(ibaq2,1,function(x){
  dat <- data.frame(group=group,value=x)
  dat_mean <- dat %>% group_by(group) %>% summarise(mean=mean(value)) %>% select(mean)
})  #注意这里我计算均值忽略了na.rm参数
out[[1]]
out2 <- as.data.frame(t(do.call(cbind,out)))
colnames(out2) <- levels(group)
rownames(out2) <- rownames(ibaq2)

exp <- data.frame(ProteinID=rownames(out2),out2)
data1 <- left_join(path3,exp,by="ProteinID") %>% dplyr::select(1:3,6:9) %>% 
  gather(Sample,Abundance,-c(Pathway,Level1,Level2)) %>% 
  group_by(Pathway,Sample) %>% summarise(Sum=sum(Abundance)) %>% 
  spread(Sample,Sum)

tmp <- path3[1:3]
annotation <- tmp[!duplicated(tmp),]
length(intersect(data1$Pathway,annotation$Pathway))
#先按pathway排序,再按level2,level1排序
plotdat <- left_join(annotation,data1,by="Pathway") %>% 
  arrange(Pathway) %>% 
  arrange(Level2) %>% arrange(Level1)

现在已经得到想要的数据了。


image.png

绘图

这个就不用多解释了。

library(pheatmap)
Exp_log2=plotdat  #实际上我中间还进行了其他处理,这里便于绘图直接赋值
colnames(Exp_log2)
exp_plot <- select(Exp_log2,S11SC,S12SC,S12CC,S01CC)
rownames(exp_plot) <- Exp_log2$Pathway

annotation_row <- select(Exp_log2,Level2,Level1)
rownames(annotation_row) <- Exp_log2$Pathway

pheatmap(exp_plot,cluster_rows = F,cluster_cols = F,scale = "row",
         annotation_row = annotation_row,
          border_color = NA,
          #angle_col=45,
          color = colorRampPalette(c("blue","white","red"))(50))

图片大概成这样:


image.png

根据自己需要挑选一些pathway展示吧,太多不好看。

Ref: https://stackoverflow.com/questions/28719088/r-semicolon-delimited-a-column-into-rows

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350