使用RateLimiter完成简单的大流量限流

使用RateLimiter完成简单的大流量限流,抢购秒杀限流

RateLimiter是guava提供的基于令牌桶算法的实现类,可以非常简单的完成限流特技,并且根据系统的实际情况来调整生成token的速率。

通常可应用于抢购限流防止冲垮系统;限制某接口、服务单位时间内的访问量,譬如一些第三方服务会对用户访问量进行限制;限制网速,单位时间内只允许上传下载多少字节等。

下面来看一些简单的实践,需要先引入guava的maven依赖。

        <dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
            <version>19.0</version>
        </dependency>

一 有很多任务,但希望每秒不超过N个

import com.google.common.util.concurrent.RateLimiter;  
  
import java.util.ArrayList;  
import java.util.List;  
import java.util.concurrent.ExecutorService;  
import java.util.concurrent.Executors;  
  
/** 
 * Created by wuwf on 17/7/11. 
 * 有很多个任务,但希望每秒不超过X个,可用此类 
 */  
public class Demo1 {  
  
    public static void main(String[] args) {  
        //0.5代表一秒最多多少个  
        RateLimiter rateLimiter = RateLimiter.create(0.5);  
        List<Runnable> tasks = new ArrayList<Runnable>();  
        for (int i = 0; i < 10; i++) {  
            tasks.add(new UserRequest(i));  
        }  
        ExecutorService threadPool = Executors.newCachedThreadPool();  
        for (Runnable runnable : tasks) {  
            System.out.println("等待时间:" + rateLimiter.acquire());  
            threadPool.execute(runnable);  
        }  
    }  
  
    private static class UserRequest implements Runnable {  
        private int id;  
  
        public UserRequest(int id) {  
            this.id = id;  
        }  
  
        public void run() {  
            System.out.println(id);  
        }  
    }  
  
}  

该例子是多个线程依次执行,限制每2秒最多执行一个。运行看结果

image

我们限制了2秒放行一个,可以看到第一个是直接执行了,后面的每2秒会放行一个。

rateLimiter.acquire()该方法会阻塞线程,直到令牌桶中能取到令牌为止才继续向下执行,并返回等待的时间

二 抢购场景限流

譬如我们预估数据库能承受并发10,超过了可能会造成故障,我们就可以对该请求接口进行限流。

package com.tianyalei.controller;  
  
import com.google.common.util.concurrent.RateLimiter;  
import com.tianyalei.model.GoodInfo;  
import com.tianyalei.service.GoodInfoService;  
import org.springframework.web.bind.annotation.RequestMapping;  
import org.springframework.web.bind.annotation.RestController;  
  
import javax.annotation.Resource;  
  
/** 
 * Created by wuwf on 17/7/11. 
 */  
@RestController  
public class IndexController {  
    @Resource(name = "db")  
    private GoodInfoService goodInfoService;  
  
    RateLimiter rateLimiter = RateLimiter.create(10);  
  
    @RequestMapping("/miaosha")  
    public Object miaosha(int count, String code) {  
        System.out.println("等待时间" + rateLimiter.acquire());  
        if (goodInfoService.update(code, count) > 0) {  
            return "购买成功";  
        }  
        return "购买失败";  
    }  
  
  
  
    @RequestMapping("/add")  
    public Object add() {  
        for (int i = 0; i < 100; i++) {  
            GoodInfo goodInfo = new GoodInfo();  
            goodInfo.setCode("iphone" + i);  
            goodInfo.setAmount(100);  
            goodInfoService.add(goodInfo);  
        }  
  
        return "添加成功";  
    }  
} 

这个是接着之前的文章(秒杀系统db,http://blog.csdn.net/tianyaleixiaowu/article/details/74389273)加了个Controller

代码很简单,就是请求过来时,调用RateLimiter.acquire,如果每秒超过了10个请求,就阻塞等待。我们使用jmeter进行模拟100个并发。

创建一个线程数为100,启动间隔时间为0的线程组,代表100个并发请求。

image

启动jmeter请求,看控制台结果

image
image

初始化10个的容量,所以前10个请求无需等待直接成功,后面的开始被1秒10次限流了,基本上每0.1秒放行一个

三 抢购场景降级

上面的例子虽然限制了单位时间内对DB的操作,但是对用户是不友好的,因为他需要等待,不能迅速的得到响应。当你有1万个并发请求,一秒只能处理10个,那剩余的用户都会陷入漫长的等待。所以我们需要对应用降级,一旦判断出某些请求是得不到令牌的,就迅速返回失败,避免无谓的等待。

由于RateLimiter是属于单位时间内生成多少个令牌的方式,譬如0.1秒生成1个,那抢购就要看运气了,你刚好是在刚生成1个时进来了,那么你就能抢到,在这0.1秒内其他的请求就算白瞎了,只能寄希望于下一个0.1秒,而从用户体验上来说,不能让他在那一直阻塞等待,所以就需要迅速判断,该用户在某段时间内,还有没有机会得到令牌,这里就需要使用tryAcquire(long timeout, TimeUnit unit)方法,指定一个超时时间,一旦判断出在timeout时间内还无法取得令牌,就返回false。注意,这里并不是真正的等待了timeout时间,而是被判断为即便过了timeout时间,也无法取得令牌。这个是不需要等待的。

看实现:

/** 
     * tryAcquire(long timeout, TimeUnit unit) 
     * 从RateLimiter 获取许可如果该许可可以在不超过timeout的时间内获取得到的话, 
     * 或者如果无法在timeout 过期之前获取得到许可的话,那么立即返回false(无需等待) 
     */  
    @RequestMapping("/buy")  
    public Object miao(int count, String code) {  
        //判断能否在1秒内得到令牌,如果不能则立即返回false,不会阻塞程序  
        if (!rateLimiter.tryAcquire(1000, TimeUnit.MILLISECONDS)) {  
            System.out.println("短期无法获取令牌,真不幸,排队也瞎排");  
            return "失败";  
        }  
        if (goodInfoService.update(code, count) > 0) {  
            System.out.println("购买成功");  
            return "成功";  
        }  
        System.out.println("数据不足,失败");  
        return "失败";  
    } 

在不看执行结果的情况下,我们可以先分析一下,一秒出10个令牌,0.1秒出一个,100个请求进来,假如100个是同时到达,那么最终只能成交10个,90个都会因为超时而失败。事实上,并不会完全同时到达,必然会出现在0.1秒后到达的,就会被归入下一个周期。这是一个挺复杂的数学问题,每一个请求都会被计算未来可能获取到令牌的概率。

还好,RateLimiter有自己的方法去做判断。

我们运行看结果

image

多执行几次,发现每次这个顺序都不太一样。

经过我多次试验,当设置线程组的间隔时间为0时,最终购买成功的数量总是22.其他的78个都是失败。但基本都是开始和结束时连续成功,中间的大段失败。

我修改一下jmeter线程组这100个请求的产生时间为1秒时,结果如下

image

除了前面几个和最后几个请求连续成功,中间的就比较稳定了,都是隔8个9个就会成功一次。

当我修改为2秒内产生100个请求时,结果就更平均了

image

基本上就是前10个成功,后面的就开始按照固定的速率而成功了。

这种场景更符合实际的应用场景,按照固定的单位时间进行分割,每个单位时间产生一个令牌,可供购买。

看到这里是不是有点明白抢小米的情况了,很多时候并不是你网速快,手速快就能抢到,你需要看后台系统的分配情况。所以你能否抢到,最好是开很多个账号,而不是一直用一个账号在猛点,因为你点也白点,后台已经把你的资格排除在外了。

当然了,真正的抢购不是这么简单,瞬间的流量洪峰会冲垮服务器的负载,当100万人抢1万个小米时,连接口都请求不进来,更别提接口里的令牌分配了。

此时就需要做上一层的限流,我们可以选择在上一层做分布式,开多个服务,先做一次限流,淘汰掉绝大多数运气不好的用户,甚至可以随机丢弃某些规则的用户,迅速拦截90%的请求,让你去网页看单机排队动画,还剩10万。10万也太大,足以冲垮数据层,那就进队列MQ,用MQ削峰后,然后才放进业务逻辑里,再进行RateLimiter的限流,此时又能拦截掉90%的不幸者,还剩1万,1万去交给业务逻辑和数据层,用redis和DB来处理库存。恭喜,你就是那个漏网之鱼。

重点在于迅速拦截掉99%的不幸者,避免让他们去接触到数据层。而且不能等待时间太长,最好是请求的瞬间就能确定你是永远看单机动画最好。

/***************************************************************************************************/

补充:

只在本地时效果不怎么明显,我把这个小工程部署到线上服务器压测了一下。

首先试了一下去掉了RateLimiter,只用db的Service处理数据的情况,发现mysql的服务占CPU约20%,总体请求失败率较高。多是Tomcat超时。

使用RateLimiter阻塞后,数据库CPU基本没动静,压力几乎没有,Tomcat超时还有一些,因为还是并发数大,处理不了。

使用RateLimiter非阻塞,超时和请求失败极少,总体QPS上升了不少。

测试不太正规,就大概跑了跑。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,809评论 6 513
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,189评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,290评论 0 359
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,399评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,425评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,116评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,710评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,629评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,155评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,261评论 3 339
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,399评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,068评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,758评论 3 332
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,252评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,381评论 1 271
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,747评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,402评论 2 358

推荐阅读更多精彩内容