【LEETCODE】模拟面试-357- Count Numbers with Unique Digits

题目:

https://leetcode.com/problems/count-numbers-with-unique-digits/

Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n.

Example:
Given n = 2, return 91. (The answer should be the total numbers in the range of 0 ≤ x < 100, excluding [11,22,33,44,55,66,77,88,99])

Hint:

A direct way is to use the backtracking approach.
Backtracking should contains three states which are (the current number, number of steps to get that number and a bitmask which represent which number is marked as visited so far in the current number). Start with state (0,0,0) and count all valid number till we reach number of steps equals to 10n.
This problem can also be solved using a dynamic programming approach and some knowledge of combinatorics.
Let f(k) = count of numbers with unique digits with length equals k.
f(1) = 10, ..., f(k) = 9 * 9 * 8 * ... (9 - k + 2) [The first factor is 9 because a number cannot start with 0].

分析:

This question is to get a count.
Given n, count the numbers which belong to [0, 10^n) and do not contain duplicate digits.

Firstly, this n must be less or equal to 10, since there are 0~9 10 unique digits.

When n=1, count=10. (0~9)
When n=2, there are 2 classes of numbers, one is 1-digit, another is 2-digit.
Under this n, when i==1, count=10.
when i==2, count=9*(8+1).
when i==3, count=9*9*(7+1)
...
when i==n, count=9*9*8..*(9-n+2)

So here we can use Dynamic Programming.
Let dp[] to be an array with length=1*(n+1).
dp[k] means if a number is of k digits, how many kinds of combinations can satisfy the requirement.
For n, the number may have k=1~n situations.
For k, the choices on the (i)th position depends on the (i-1)th and before.
Finally, we will sum the dp from dp[0]~dp[n], and this is the result.

Python

class Solution(object):
    def countNumbersWithUniqueDigits(self, n):
        """
        :type n: int
        :rtype: int
        """
      
        n = min(n, 10)
        dp = [1] + [9]*n
        
        for k in xrange(2, n+1):
            for i in xrange(9, 9-k+1, -1):
                dp[k] *= i
        
        return sum(dp)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 12,164评论 0 10
  • 西昌中秋幸福之旅(二) 今天是个好日子,早上起来,大家愉快地集合前往西昌卫星发射基地,约摸,50公里路,我...
    朱三妹阅读 1,644评论 0 0
  • 很好
    何包妈阅读 1,768评论 0 0
  • 我徒弟算是我高中生涯中最重要的一个人了。而我们之间的很多琐碎也因为时间久远而模糊不清了,那就从头开始回忆吧。大概每...
    有行阅读 3,038评论 0 0
  • 刚给父亲打完电话,在这父亲节之际,只希望多陪他说几句话,平时子女也不在身边,一年能见几次都算是奢侈。 突然弹出的新...
    寂晚庭阅读 1,579评论 0 0