算法训练第十六天|104.二叉树的最大深度、111.二叉树的最小深度、222.完全二叉树的节点个数

二叉树|104.二叉树的最大深度、111.二叉树的最小深度、222.完全二叉树的节点个数


104.二叉树的最大深度

自己审题思路

使用层序遍历计算最大深度(有多少层就有多深)

看完代码随想录题解后的收获

递归算法学习

代码(迭代--层序遍历):
class solution {
public:
    int maxDepth(TreeNode* root) {
        if (root == NULL) return 0;
        int depth = 0;
        queue<TreeNode*> que;
        que.push(root);
        while(!que.empty()) {
            int size = que.size();
            depth++; // 记录深度
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
        }
        return depth;
    }
};
代码(递归):
class solution {
public:
    int getdepth(TreeNode* node) {
        if (node == NULL) return 0;
        int leftdepth = getdepth(node->left);       // 左
        int rightdepth = getdepth(node->right);     // 右
        int depth = 1 + max(leftdepth, rightdepth); // 中
        return depth;
    }
    int maxDepth(TreeNode* root) {
        return getdepth(root);
    }
};

参考详解


111.二叉树的最小深度

自己审题思路

使用层序遍历,在判断当前节点没有左右孩子后返回。

看完代码随想录题解后的收获

递归思路的学习。

代码(迭代--层序遍历):
class Solution {
public:

    int minDepth(TreeNode* root) {
        if (root == NULL) return 0;
        int depth = 0;
        queue<TreeNode*> que;
        que.push(root);
        while(!que.empty()) {
            int size = que.size();
            depth++; // 记录最小深度
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
                if (!node->left && !node->right) { // 当左右孩子都为空的时候,说明是最低点的一层了,退出
                    return depth;
                }
            }
        }
        return depth;
    }
};
代码(递归):
class Solution {
public:
    int getDepth(TreeNode* node) {
        if (node == NULL) return 0;
        int leftDepth = getDepth(node->left);           // 左
        int rightDepth = getDepth(node->right);         // 右
                                                        // 中
        // 当一个左子树为空,右不为空,这时并不是最低点
        if (node->left == NULL && node->right != NULL) { 
            return 1 + rightDepth;
        }   
        // 当一个右子树为空,左不为空,这时并不是最低点
        if (node->left != NULL && node->right == NULL) { 
            return 1 + leftDepth;
        }
        int result = 1 + min(leftDepth, rightDepth);
        return result;
    }

    int minDepth(TreeNode* root) {
        return getDepth(root);
    }
};

参考详解


222.完全二叉树的节点个数

自己审题思路

使用二叉树遍历,遍历到一个节点就++

看完代码随想录题解后的收获

使用完全二叉树的特性来优化算法;

代码(迭代)
class Solution {
public:
    int countNodes(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        int result = 0;
        while (!que.empty()) {
            int size = que.size();
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                result++;   // 记录节点数量
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
        }
        return result;
    }
};
代码(递归)
// 版本一
class Solution {
private:
    int getNodesNum(TreeNode* cur) {
        if (cur == NULL) return 0;
        int leftNum = getNodesNum(cur->left);      // 左
        int rightNum = getNodesNum(cur->right);    // 右
        int treeNum = leftNum + rightNum + 1;      // 中
        return treeNum;
    }
public:
    int countNodes(TreeNode* root) {
        return getNodesNum(root);
    }
};

// 版本二
class Solution {
public:
    int countNodes(TreeNode* root) {
        if (root == NULL) return 0;
        return 1 + countNodes(root->left) + countNodes(root->right);
    }
};
代码(利用完全二叉树特性):
class Solution {
public:
    int countNodes(TreeNode* root) {
        if (root == nullptr) return 0;
        TreeNode* left = root->left;
        TreeNode* right = root->right;
        int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便
        while (left) {  // 求左子树深度
            left = left->left;
            leftDepth++;
        }
        while (right) { // 求右子树深度
            right = right->right;
            rightDepth++;
        }
        if (leftDepth == rightDepth) {
            return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,所以leftDepth初始为0
        }
        return countNodes(root->left) + countNodes(root->right) + 1;
    }
};

上述算法时间复杂度为logN*logN 时间复杂度计算

参考详解


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容