2019-03-17神经网络——optimizer

神经网络优化算法,通常有三种:小批量梯度下降法,随机梯度下降法和批量梯度下降法。

 小批量梯度下降法

适用于训练数据规模大,数据冗余,

对于小批量梯度下降,批量越大,梯度下降越快、曲线越平缓

衍生出的optimizer都是通过改变学习率衰减和梯度方向变化来优化。

对于学习率衰减,一种是通过固定规则的学习率衰减,比如随时间衰减的逆时衰减,指数衰减,自然指数衰减等。其他AdaGrad, RMSprop,AdaDelta等是通过不同的参数设置不同学习率,自适应调整学习率。

1. AdaGrad

累加参数梯度的平方,

然后按照新的更新值计算学习率:

这样某个参数累积梯度较小的时候,学习率就较大,反之学习率较小;但是总之学习率是下降的。

该方法的问题在于,迭代到一定次数后Gt总归是很大的,这时候如果没有学习好的话,学习率也会很低,后面就很难学习了。

2. RMSprop

该方法对AdaGrad优化,Gt从累加变成了移动平均:

其中beta通常取0.9;这样学习率不一定变小了,梯度平方很小的时候也会变大。


梯度方向优化:

小批量梯度下降法在批量很小的时候会出现震荡的方式下降,梯度的移动平均可以有效解决这个问题,就是动量法

在第t次迭代时,使用负梯度的加权移动平均作为参数的更新方向

这样在一段时间内,梯度变化方向不一致的时候参数变化小,一致则变化大,减小震荡

一般而言,在迭代初期,梯度方法都比较一致,动量法会起到加速作用,可以更快地到达最优点。在迭代后期,梯度方法会取决不一致,在收敛值附近震荡,动量法会起到减速作用,增加稳定性。从某种角度来说,当前梯度叠加上部分的上次梯度,一定程度上可以近似看作二阶梯度。

Adam Adaptive Moment Estimation 自适应动量估计

Adam是动量法和RMSprop的结合,梯度方向上使用移动平均的动量法,学习率上使用移动平均的RMSprop。

β1 = 0.9, β2 = 0.99。

开始t很小的时候,M和G都小于真正的均值和方差,所以要进行纠正

算法更新值为:

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 230,527评论 6 544
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 99,687评论 3 429
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 178,640评论 0 383
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 63,957评论 1 318
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 72,682评论 6 413
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 56,011评论 1 329
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 44,009评论 3 449
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 43,183评论 0 290
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 49,714评论 1 336
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 41,435评论 3 359
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 43,665评论 1 374
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 39,148评论 5 365
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,838评论 3 350
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 35,251评论 0 28
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 36,588评论 1 295
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 52,379评论 3 400
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 48,627评论 2 380

推荐阅读更多精彩内容