梯度消失/爆炸

1. 梯度问题

由上图我们可以发现,第一层的学习速率和第四层的学习速率差了两个数量级,也就是第一层比第四层慢了100倍。现在我们有一项重要的观察结果:至少在某些深度神经网络中,在我们在隐藏层反向传播的时候梯度倾向于变小。这意味着在前面的隐藏层中的神经元学习速度要慢于后面的隐藏层。这个现象叫做梯度消失。除了梯度消失,还有可能有梯度爆炸。更一般的说,在深度神经网络中的梯度是不稳定的,在前面的层中或会消失,或会激增。这种不稳定性才是深度神经网络中基于梯度学习的根本问题。

2. 梯度消失的原因

注意!这里不是反向传播,给的仅仅是一个b的改变对于输出的影响。

3. 梯度爆炸的原因

采用ReLU能够避免梯度消失的问题。

梯度下降是一种优化算法,使得代价函数的误差最小。梯度下降的式子有两个,分别对w和b进行更新。比如

w' = w - n * (Cost/W)'。 (Cost/W)'是代价函数对于权重的导数。可以看出来,梯度下降是对权重进行更新,但是如果要对每一个权重进行更新的话,那个导数是很难求的。因此,就要用反向传播,对前面隐藏层的权重进行求导。所以这就是梯度下降和反向传播的关系。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,029评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,395评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,570评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,535评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,650评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,850评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,006评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,747评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,207评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,536评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,683评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,342评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,964评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,772评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,004评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,401评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,566评论 2 349

推荐阅读更多精彩内容

  • 第二个Topic讲深度学习,承接前面的《浅谈机器学习基础》。 深度学习简介 前面也提到过,机器学习的本质就是寻找最...
    我偏笑_NSNirvana阅读 15,584评论 7 49
  • 在26岁的年纪,和最爱的北京说再见,和自己和朋友说一定会回北京的,不知道说对自己的自我安慰还是一份带着自己勇往前行...
    num2阅读 188评论 1 1
  • 今天要介绍柏拉图(Plato)所著的理想国(The Republic)开篇对正义(justice)的辩论。 这一轮...
    思想筆記阅读 2,618评论 6 16
  • 随适谣 风休住,云莫收 一笑释千忧 万种风情尽休 独剩清流 缘溪行,仗剑走,茶代酒 出闺阁,意气长抒
    燚阳阅读 105评论 3 0