讲解:AMA3632、Data Science、R、RMatlab|Python

The Hong Kong Polytechnic UniversityDepartment of Applied MathematicsAMA3632 Programming for Data ScienceAssignment 1Instructions:1. Due Date: 1 Nov 2019 at 5:30pm.2. Full marks of this assignment is 6 marks.3. Type your codes and outputs in the word document or a R notebook file. Give comments onyour codes. Handwriting codes are NOT accepted.4. Submission Method: Please submit ONLINE in Blackboard AND submit a HARD COPYassignment DURING THE LECTURE before the deadline. LATE assignments could NOTbe accepted by the Blackboard system.Questions:1. Consider the following very simple genetic model. A population consists of equal numbers of twosexes: male and female. At each generation men and women are paired at random, and each pairproduces exactly two offspring, one male and one female. We are interested in the distributionof height from one generation to the next.(a) Assume that the heights of the both male and female in the first generation are randomlychosen from a normal distribution with mean 160 cm and variance of 400 cm2. Use commands,dataframe, rnorm, to generate a data frame called “pop” for the first generation.(b) Suppose that the height of both children is just the average of the height of their parents.Write a function to generate a data frame containing the height of males and/or females fornext generation. You may use sample command to permutate the male and female heightin random. For calculation of mean height for the offspring, you may use apply and meancommands.(c) Use tAMA3632代做、代写Data Science、代写R编程he function from part (b) to generate nine generations and then use the lattice libraryto obtain histogram of male heights for nine generations. The last plot of heights phenomenof the male heights is called regression to the mean.2. For f : R → R, the NewtonRaphson algorithm uses a sequence of linear approximations to fto find a root. What happens if we use quadratic approximations instead? Suppose that xnis our current approximation to f; then a quadratic approximation to f at xn is given by thesecond-order Taylor expansion:f(x) ≈ gn(x) = f(xn) + (x − xn)fLet xn + 1 be the solution of gn(x) = 0 that is closest to xn, assuming a solution exists. Ifgn(x) = 0 has no solution, then let xn + 1 be the point at which gn attains either its minimumor maximum. Figure 1 illustrates the two cases.Figure 1: The iterative root-finding scheme of the Newton-Raphson algorithm based on the secondorderTaylor expansion.Implement this algorithm in R and use it to find the fixed points of the following functions:(a) cos(x) − x using x0 = 1, 3, 6.(b) log(x) − exp(−x) using x0 = 2.(c) x3 − x − 3 using x0 = 0.(d) x3 − 7x2 + 14x − 8 using x0 = 1.1, 1.2, ..., 1.9.(e) log(x) exp(−x) using x0 = 2.For your implementation, assume that you are given a function ftn(x) that returns the vector(f(x), f′(x), f′′(x)). Given xn, if you rewrite gn as gn(x) = a2x2 + a1x + a0 then you can use the1 − 4a2a0)/2a2 to find the roots of gn and thus xn+1. If gn has no roots thenthe min/max occurs at the point g′n(x) = 0.转自:http://www.3daixie.com/contents/11/3444.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,320评论 0 10
  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,460评论 0 23
  • 贵妃醉酒戏书笺, 李白吟诗颂百篇。 手捧墨香辞赋发, 晚归牧笛伴炊烟。
    诗人萧入铭阅读 796评论 1 8
  • 2019-02-24 日精进打卡 姓名:彭新 部门岗位:进口部 【日精进打卡第329天】 【知~学习】 听书 一、...
    新新小阅读 32评论 0 0
  • 169公分67公斤那个叫做Messi的雄狮决定战斗! 欧洲冠军联赛冠军,西甲联赛冠军,西班牙国王杯冠军,欧洲超级杯...
    孤勇QAQ阅读 360评论 0 1