Math: Statistics

Mean, Median, Mode

1) mean is the average: mean = sum of N entries/N

2) often, in questions about means, it is helpful to think in terms of sums: sum of entries = N*(mean)

3) the median is the ‘middle’ of an ordered list. If two numbers are in the ‘middle’, then we average these two numbers

4) the mode, the most frequently appearing number, is less important. Some lists have a mode, some have more than one, and many have no mode at all

Change the highest/lowest number on a list would not change the median, but it would change the mean


More on Mean and Median

Numbers far away from the center of the list are called ‘outliers’ heavily influenced mean but not median

1) if all the numbers on a list are evenly spaced, or if the list is symmetrically distributed, then mean = median

2) outliers pull the mean away from the median

3) we often can compare mean & median - or infer which one got bigger or smaller - without a calculation, purely by observing the direction of outliers


Weighted Averages 1

1) one way to approach weighted averages is to find sums

2) we can also find the proportion of each group, and multiply each group average by that group’s proportion

Average of whole = A_1p_1 + A_2p_2 + A_3p_3


Weighted Averages 2

If there are only two groups, the distances from the two group averages to the total average are in a ratio that is the reciprocal of the ratio of the proportions.


Range and Standard Deviation

1) measures of spread tell us how far apart numbers on a list are from each other

2) range = max - min

3) if all the numbers on a list are identical , then the SD = 0

4) if all the numbers on a list are the same distance from the mean, SD = that distance

5) lots of points close to the mean => small SD; lots of points far from the mean => large SD

6) list +/- K does not change SD

7) (list)*K -> K*(SD)


More Standard Deviation

1) the effect on the SD of including a new pair of numbers in a set

The more close to the mean, the more SD decrease.

2) we discussed using the SD as a unit to indicate the position of an individual in a large population

If a is 10 units above the mean, and the SD = 2, then this individual  is 5 SDs above the mean


Normal Distribution (a.k.a ‘the bell curve’)

1) Histograms visually display data; the heights of the bars represent the ‘frequency’.

2) for population-size set, histogram 柱状图 become smooth distributions

3) you need to know the normal distribution (a.k.a. The ‘bell curve’)

4) on any normal distribution, 34% of the population is between M and (M+S), and 13.5% is btw (M+S) and (M+2S)


Quartile and Boxplots

区分 mean & median

1) the quartiles (Q_1, median, Q_3) divide the whole list into four equal lists

2) Q_1 is the median of the ‘lowest list’. Q_3 is the median of the ‘upper list’

3) the max & min and three quartile numbers constitute the ‘five number summary’, and these determine the five vertical lines on a boxplot

Note: there is never any guarantee that the median will be the average of the max & the min


More on Boxplots

1) the box of the boxplot is the middle 50% of the population

2) the size of this middle 50% is called the interquartile range, IQR, and equals Q_3 - Q_1

3) the ‘percent’ interpretations of median and the quartiles works only if the data set is the size of a real population


Percentiles

Notice:

1) percentiles only make sense for LARGE distributions

2) the percentile of the lowest score is the 0th percentile

3) the percentile of the highest score is the 99th percentile. (There is no such thing as a ‘100th percentile’!!)

Halfway btw percentile is NOT the same as halfway btw scores

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,012评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,628评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,653评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,485评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,574评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,590评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,596评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,340评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,794评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,102评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,276评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,940评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,583评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,201评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,441评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,173评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,136评论 2 352