通俗讲解边缘计算

通俗讲解边缘计算


随着物联网越来越火,同时伴随着物联网而来的,就是各种概念和各种技术,其中一个就是边缘计算,当然还有雾计算。其实边缘计算和雾计算都差不多,雾计算只是和云计算是相对的。只是叫边缘计算呢,比较高大上吧。


下面我们要通俗地讲一讲边缘计算。

为什么要通俗的讲呢,怕如果不通俗,你听不明白。新的东西在出来的时候,往往是需要一个接纳和理解的过程。就像以前互联网刚出来的时候,很多人都不知道互联网,于是就得慢慢科普,让大家慢慢接受和理解呀。谁现在还解释什么是互联网呀。

而边缘计算也有一段时间了,只是随着物联网的发展,边缘计算的概念也开始流行起来。我们先看一段非通俗的介绍边缘计算的概念:


边缘计算,是一种分散式运算的架构。在这种架构下,将应用程序、数据资料与服务的运算,由网络中心节点,移往网络逻辑上的边缘节点来处理。

或者说,边缘运算将原本完全由中心节点处理大型服务加以分解,切割成更小与更容易管理的部分,分散到边缘节点去处理。

边缘节点更接近于用户终端装置,可以加快资料的处理与传送速度,减少延迟。


以上是我从网络文章摘抄的一段对于边缘计算的解释。整个解释基本都是专业术语,搞工控的你,看完这段话,你来告诉我什么是边缘计算。

作为一名参与研发产品边缘计算的程序员,我决定写一篇文章来通俗讲解一下这个边缘计算。


首先,我要举一个不太恰当的例子。

比如有一款APP,用户在使用这款APP的时候,就会收集用户的信息,比如收集这个用户的年龄,性别,手机号,地址位置,搜索记录等等信息,而收集这些信息主要是更好地分析这个用户的行为和感兴趣的东西,比如车,房子,书,美食等什么感兴趣。然后更为准确地为其投放内容及广告。

    这个是很常见的一个功能,但是就是这样一个功能,怎么和边缘计算挂钩呢。

在边缘计算之前,就是云计算了。

如果是使用云计算,这款APP的行为是这样的:

    APP收集到信息后,把所有的基本信息,上传到服务器中,然后由服务器来执行算法,计算和识别出用户的兴趣爱好,甚至可能推算出这个用户的消费能力。然后服务器就可以根据这个推算出来的结果,为用户投放其感兴趣的内容和广告。

如果是使用边缘计算,这款APP的行为就是这样:

    APP收集了信息后,不上传到服务器中。然后由APP自己计算和识别出这个用户的兴趣和爱好,也可以推算出这个用户的消费能力,也就是服务器的计算功能,直接由APP来完成。然后服务器只需要问一下APP,哪个用户是有可能是年薪百万的,哪个用户是单身的。APP只需要告诉服务器说,这个一路向东用户很帅,而且还单身,喜欢旅游,写诗,可以为其投放相亲美女内容。

就这样,整个过程并没有服务器参与计算,服务器也没有参与收集信息。因为这个信息在APP本身收集和计算,并没有进行上传,所以也没有涉及信息收集。

而,这就是边缘计算。

也就是以前由服务器作计算的部分,现在改由信息采集的设备直接计算了,再把计算的结果,直接输出到服务器中。服务器只要结果,并不需要过程的数据。




下面我们就以回答问题的形式来通俗的聊一聊这个边缘计算吧。

所以,什么是边缘计算呢。

边缘计算,说白了,就是(服务器)云计算懒得算了,就这点数据,你在数据采集的时候,顺便自己算得了,什么都丢到服务器来算,很累的。于是,边缘计算就这么来了。


那么,工控领域行业中使用到边缘计算的都有哪呢

这个就太多了。随着很多PLC,控制器和触摸屏等都开始接入到物联网中,每个设备需要采集的信息不一样,有温度,湿度,产量,生产数据,运行状态等。而不同行业的参数指标,性能数据都不一样,这很难在服务器通过云计算来形成一套标准,这使得PLC,控制器等,都会用到边缘计算。



为什么以前的DTU,或者物联模块等不流行边缘计算,现在开始流行了呢。

因为现在的IoT使用的模块或者芯片的处理能力也越来越高,资源也比较丰富,随着一些芯片成本的下降,以及开发模式的简化,使得一些芯片或模块在处理基本的数据采集功能后,仍存在资源过剩及功能利用率低的情况,也就是一个100%的芯片或模块,你只使用了10%的来采集数据,那还有90%你可以用来作计算


那么,使用边缘计算的优势在哪里呢。

1 可以使得设备的支持数量提升几个数量级。

   比如一个服务器有10000点血。而接入一个设备,就要消耗1点血,如果再对这个设备进行数据分析,需要消耗9点血。也就是接入并计算一个设备就需要10点血。那么这个服务器最多只能接入1000个设备就挂了。

   如果服务器只负责接入设备,不进行计算和分析,那么接入一个设备,消耗1点血,由设备自己进行数据计算和分析,再输出结果。这时候服务器就可以接入10000个设备了。

  没有使用边缘计算,服务器可以接1000个设备。

  如果使用了边缘计算,服务器可以接10000个设备。提升了一个数量级。而对于一些复杂的设备,特别是一些工厂,现场作业等需要数据量多的,如果使用了边缘计算来给服务器节省空间和资源,这个优势更能体现出来了。

2 让计算变得更为灵活和可控

   前面说到,接入设备的服务器很难做到统一的计算分析标准,因为物联网可是一个万物接入的网络,每一个设备采集的数据不一样。如果使用了边缘计算,就可以单独针对每一个设备进行相应的计算和分析。当然,如果相同的设备或者相同参数的,可以进行复制使用同一套计算标准或算法。如果将计算脚本开放出来给用户,用户就可以自定义去添加自己的计算公式和行为。


边缘计算的模式和拓扑结构是什么样的呢。


比如要在一套数据采集系统里,以一个云服务器为中心,移动客户端,PC客户端或第三方接口等接入到云服务器获取数据,而数据采集方呢,由数据采集模块来连接到云服务中。

    数据采集模块可以采集PLC,变频器,智能仪表等,将数据上传到云服务器中,由服务器进行数据分析和计算,然后PC或移动客户端,第三方接口就可以获取数据分析的结果。但是这种情况下,随着设备的接入越来越多,云服务器的负担也会越来越重,而且接入的PLC,控制器等的种类也越来越多,原来的云服务数据计算模式难以满足越来越复杂的应用。这时候边缘计算就应运而生了。

    在原拓扑结构不变的情况,可无缝引入边缘计算。在数据采集模块端开放边缘计算功能,将复杂的计算,策略,规则等,由数据采集模块进行运算,得到输出结果后,只需要将结果上传到云服务中。再由PC客户端,移动客户端及第三方接口从云服务获取。

    比如数据采集模块需要采集一个电表,电表能采集的数据有电流,电压,偏偏没有功率。当然现在的电表采集不到功率很少了,只是举例。

    那怎么办呢,偏偏客户很想看到功率。那在没有边缘计算的时候,为了要看到功率,只好在云服务里,增加一定的计算规则,将采集到的电流和电压通过计算得到功率。如果有1000个电表,云服务器就要对这1000个电表进行计算。这就增加了云服务器的工作量和负担了。

    如果有了边缘计算,那么在数据采集模块,就可以添加计算功能,直接将采集的电流和电压通过计算得到功率,只需要把功率上传给服务器就可以了。这样,即便有50000个电表,云服务也毫无计算压力,因为它并不需要计算。


    这就是通俗的讲一讲边缘计算。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容