并发编程之第三篇(synchronized)

并发编程之第三篇(synchronized)

3. 自旋优化

重量级锁竞争的时候,还可以使用自旋来进行优化,如果当前线程自旋成功(即这时候持锁线程已经退出了同步块,释放了锁),这时当前线程就可以避免阻塞。
自旋重试成功的情况


在这里插入图片描述

自旋重试失败的情况


在这里插入图片描述
  • 在Java6之后自旋锁是自适应的,比如对象刚刚的一次自旋操作成功过,那么认为这次自旋成功的可能性会高,就多自旋几次;反之,就少自旋甚至不自旋,总之,比较智能。
  • 自旋会占用CPU时间,单核CPU自旋就是浪费,多核CPU自旋才能发挥优势。
  • Java7之后不能控制是否开启自旋功能

4. 偏向锁

轻量级锁在没有竞争时(就自己这个线程),每次重入任然需要执行CAS操作。
Java6中引入了偏向锁来做进一步优化 :只有第一次使用CAS将线程ID设置到对象的Mark Word头,之后发现这个线程ID是自己的就表示没有竞争,不用重新CAS。以后只要不发生竞争,这个对象就归该线程所有
例如 :


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

偏向状态
回忆一下对象头格式

在这里插入图片描述

一个对象创建时 :

  • 如果开启了偏向锁(默认开启),那么对象创建后,markword值为0x05即最后3位为101,这时它的thread、epoch、age都为0

  • 偏向锁是默认是延迟的,不会在程序启动时立即生效,如果想避免延迟,可以加VM参数 -XX:BiasedLockingStartupDelay=0来禁用延迟

  • 如果没有开启偏向锁,那么对象创建后,markwork值为0x01即最后3位为001,这时它的hashcode、age都为0,第一次用到hashcode时才会赋值
    1)测试延迟特性
    2)测试偏向锁
    class Dog{}
    利用jol第三方工具来查看对象头信息(注意这里我扩展了jol让它输出更为简洁)


    在这里插入图片描述

    输出


    在这里插入图片描述

    注意
    处于偏向锁的对象解锁后,线程id任存储于对象头中
    3)测试禁用
    在上面测试代码运行时在添加VM参数 -xx: -UseBiasedLocking禁用偏向锁
    输出

    在这里插入图片描述

    4)测试hashcode
    调用hashcode以后,会禁用偏向锁,因为对象头中没有地方存储偏向锁的线程id了。(hashcode为31位,thread为54位)
    调用了对象的hashCode,但偏向锁的对象MarkWord中存储的是线程id,如果调用hashCode会导致偏向锁被撤销

  • 轻量级锁会在锁记录中记录hashCode

  • 重量级锁会在Monitor中记录hashCode
    在调用hashCode后使用偏向锁,记得去掉 -xx: -UseBiasedLocking


    在这里插入图片描述

    输出


    在这里插入图片描述

撤销-其它线程使用对象

当有其它线程使用偏向锁对象时,会将偏向锁升级为轻量级锁


在这里插入图片描述
在这里插入图片描述

撤销-调用wait/notify

批量重偏向

如果对象虽然被多个线程访问,但没有竞争,这时偏向了线程T1的对象仍有机会重新偏向T2,重新偏向重置对象的Thread ID
当撤销偏向锁阈值超过20次后,jvm会这样觉得,我是不是偏向错了,于是会在给这些对象加锁时重新偏向至加锁线程


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

批量撤销

当撤销偏向锁阀值超过40次后,jvm会这样觉得,自己确实偏向错了,根本就不该偏向。于是整个类的所有对象都会变为不可偏向的,新建的对象也是不可偏向的


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. 锁消除

锁消除


在这里插入图片描述
在这里插入图片描述

4.7 wait/notify

在这里插入图片描述
  • Owner线程发生条件不满足,调用wait方法,即可进入WaitSet变为WAITING状态
  • BLOCKED和WAITING的线程都处于阻塞状态,不占用CPU时间片
  • BLOCKED线程会在Owner线程释放锁时唤醒
  • WAITING线程会在Owner线程调用notify或notifyAll时唤醒,但唤醒后并不意味着立刻获得锁,任需进入EntryList重新竞争

API介绍

  • obj.wait()让进入object监视器的线程到waitSet等待

  • obj.notify()在object上正在waitSet等待的线程中挑一个唤醒

  • obj。notifyAll()让object上正在waitSet等待的线程全部唤醒
    它们都是线程之间进行协作的手段,都属于Object对象的方法。必须获得此对象的锁,才能调用这几个方法


    在这里插入图片描述
    在这里插入图片描述

4.8 wait notify的正确姿势

sleep(long n)和wait(long n)的区别
1)sleep是Thread方法,而wait是Object的方法
2)sleep不需要强制和synchronized配合使用,但wait需要和synchronized一起用
3)sleep在睡眠的同时,不会释放对象锁的,但wait在等待的时候会释放对象锁
4)它们状态都是TIMED_WAITING


在这里插入图片描述

wait和notify正确使用姿势


在这里插入图片描述

同步模式之保护性暂停

即Guarded Suspension,用在一个线程待得另一个线程的执行结果
要点

  • 有一个结果需要从一个线程传递到另一个线程,让他们关联同一个GuardedObject

  • 如果有结果不断从一个线程到另一个线程那么可以使用消息队列(见生产者/消费者)

  • JDK中,join的实现、Future的实现,采用的就是此模式

  • 因为要等待另一方的结果,因此归类到同步模式


    在这里插入图片描述
    在这里插入图片描述

异步模式之生产者/消费者

要点

  • 与前面的保护性暂停中的GuardObject不同,不需要产生结果和消费结果的线程一一对应
  • 消费队列可以用来平衡生产和消费的线程资源
  • 生产者仅负责生产结果数据,不关心数据该如何处理,而消费者专心处理结果数据
  • 消息队列是有容量限制的,满时不会再加入数据空时不会再消耗数据
  • JDK中各种阻塞队列,采用的就是这种模式


    在这里插入图片描述
package com.example.demo;

import lombok.extern.slf4j.Slf4j;

import java.util.LinkedList;

@Slf4j()
public class Test1 {

    public static void main(String[] args) {
        MessageQueue messageQueue = new MessageQueue(2);

        for (int i = 0; i < 3; i++) {
            int id = i;
            new Thread(() -> {
                messageQueue.put(new Message(id, "值" + id));
            }, "生产者" + i).start();
        }

        new Thread(() -> {
            while (true) {
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                Message take = messageQueue.take();
            }
        }, "消费者").start();
    }

}

/**
 * 消息队列类,java线程之间通信
 */
@Slf4j(topic = "cn.Message")
class MessageQueue {

    /**
     * 消息的队列集合
     */
    private LinkedList<Message> linkedList = new LinkedList<>();

    /**
     * 队列容量
     */
    private int capcity;

    public MessageQueue(int capcity) {
        this.capcity = capcity;
    }

    /**
     * 获取消息
     */
    public Message take() {
        // 检查对象是否为空
        synchronized (linkedList) {
            while (linkedList.isEmpty()) {
                try {
                    log.info("队列为空,消费者线程等待");
                    linkedList.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            // 从队列头部获取消息并返回
            Message message = linkedList.removeFirst();
            log.info("已消费消息 : {}", message);
            linkedList.notifyAll();
            return message;
        }
    }

    /**
     * 存入消息
     */
    public void put(Message message) {
        synchronized (linkedList) {
            // 检查对象是否已满
            while (linkedList.size() == capcity) {
                try {
                    log.info("队列已满,生产者线程等待");
                    linkedList.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            // 将消息添加到队列的尾部
            linkedList.addLast(message);
            log.info("已生产消息 : {}", message);
            linkedList.notifyAll();
        }
    }
}

class Message {
    private int id;
    private Object value;

    public Message(int id, Object value) {
        this.id = id;
        this.value = value;
    }

    public int getId() {
        return id;
    }

    public Object getValue() {
        return value;
    }

    @Override
    public String toString() {
        return "Message{" +
                "id=" + id +
                ", value=" + value +
                '}';
    }
}

4.9 Park & Unpark

基本使用
它们是LockSupport类中的方法


在这里插入图片描述

先看park再unpark


在这里插入图片描述

输出


在这里插入图片描述

特点
与Object的wait&notify相比

  • wait,notify和notifyAll必须配合Object Monitor一起使用,而unpark不必
  • park & unpark是以线程为单位来【阻塞】和【唤醒】线程,而notify只能随机唤醒一个等待线程,notifyAll是唤醒所有等待线程,就不那么【精确】
  • park & unpark可以先unpark,而wait & notify不能先notify

原理之park & unpark

每个线程都有自己的一个Parker对象,由三部分组成_counter,_cond和_mutex打个比喻

  • 线程就像一个旅人,Parker就像他随身携带的背包,条件变量就好比被告中的帐篷。_counter就好比背包中的备用干粮(0位耗尽,1位充足)
  • 调用park就是要看需不需要停下来歇息
    • 如果备用干粮耗尽,那么钻进帐篷歇息
    • 如果备用干粮充足,那么不需停留,继续前进
  • 调用unpark,就好比令干粮充足
    • 如果这时线程还在帐篷,就唤醒让他继续前进
    • 如果这时线程还在运行,那么下次他调用park时,仅是消耗掉备用干粮,不需停留继续前进
      • 因为背包空间有限,多次调用unpark仅会补充一份备用干粮


        在这里插入图片描述
  1. 当前线程调用Unsafe.park()方法

  2. 检查_counter,本情况为0,这时,获得_mutex互斥锁

  3. 线程进入_cond条件变量阻塞

  4. 设置_counter = 0


    在这里插入图片描述
    1. 调用Unsafe.unpark(Thread_0)方法,设置_counter为1

    2. 唤醒_cond条件变量中的Thread_0

    3. Thread_0恢复运行

    4. 设置_counter为0


      在这里插入图片描述

      1.调用Unsafe.unpark(Thread_0)方法,设置_counter为1
      2.当前线程调用Unsafe.park()方法
      3.检查_counter,本情况为1,这时线程无需阻塞,继续运行
      4.设置_counter为0

4.10 重新理解线程状态转换

在这里插入图片描述

假设有线程Thread t

情况1 New --》RUNNABLE

  • 当调用 t.start()方法时,由NEW --》RUNNABLE

情况2 RUNNABLE < – > WAITING
t 线程用synchronized(obj)获取了对象锁后

  • 调用obj.wait()方法时,t线程从RUNNABLE --》WAITING
  • 调用obj.notify(),obj.notifyAll(),t.interrupt()时
    • 竞争锁成功,t线程从WAITING --> RUNNABLE

    • 竞争锁失败,t线程从WAITING --> BLOCKED


      在这里插入图片描述
      在这里插入图片描述

情况3 RUNNABLE < – > WAITING

  • 当前线程调用t.join()方法时,当前线程从RUNNABLE --> WAITING
    • 注意是当前线程在t线程对象的监视器上等待
  • t线程运行结束,或调用了当前线程的interrupt()时,当前线程从WAITING
    – > RUNNABLE

情况4 RUNNABLE < – > WAITING

  • 当前线程调用LockSupport.park()方法会让当前线程从RUNNABLE --> WAITING
  • 调用LockSupport.unpark(目标线程)或调用了线程的interrupt(),会让目标线程从WAITING --> RUNNABLE

情况5 RUNNABLE < – > TIMED_WAITING
t线程用synchronized(obj)获取了对象锁后

  • 调用obj.wait(long n)方法时,t线程从RUNNABLE --> TIMED_WAITING
    • 竞争锁成功,t线程从TIMED_WAITING --> RUNNABLE
    • 竞争锁失败,t线程从TIMED_WAITING–> BLOCKED

情况6 RUNNABLE < – > TIMED_WAITING

  • 当前线程调用t.join(long n)方法时,当前线程从RUNNABLE --> TIMED_WAITING
    • 注意是当前线程在t线程对象的监视器上等待
  • 当前线程等待时间超过了n毫秒,或t线程运行结束,或调用了当前线程的interrupt()时,当前线程从TIMED_WAITING --> RUNNABLE

情况7 RUNABLE < – > TIMED_WAITING

  • 当前线程调用Thread.sleep(long n),当前线程从RUNNABLE --> TIMED_WAITING
  • 当前线程等待时间超过了n毫秒,当前线程从TIMED_WAITING --> RUNNABLE

情况8 RUNNABLE < – > TIMED_WAITING

  • 当前线程调用LockSupport.parkNanos(long nanos)或LockSupport.parkUntil(long millis)时,当前线程从RUNNABLE – > TIMED_WAITING
  • 调用LockSupport.unpark(目标线程)或调用了线程的interrupt(),或是等待超时,会让目标线程从TIMED_WAITING --> RUNNABLE

情况9 RUNNABLE <–>BLOCKED

  • t线程用synchronized(obj)获取对象锁时如果竞争失败,从RUNNABLE --> BLOCKED
  • 持有obj锁线程的同步代码块执行完毕,会唤醒该对象上所有BLOCKED的线程重新竞争,如果其他t线程竞争成功,从BLOCKED --> RUNNABLE,其它失败的线程仍然BLOCKED

情况10 RUNNABLE < – > TERMINATED
当前线程所有代码运行完毕,进入TERMINATED

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容