大语言模型(LLM)与reactor响应式编程整合

准备环境

jdk 17 https://www.oracle.com/cn/java/technologies/downloads/#java17-windows
olloma https://ollama.com/download
idea 2024.3 https://www.jetbrains.com.cn/en-us/idea/download/?section=windows

核心依赖

    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>3.4.2</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
            <version>1.0.0-M5</version>
        </dependency>

yml配置

spring:
  ai:
    ollama:
      base-url: http://127.0.0.1:11434
      chat:
        options:
          model: qwen:0.5b
          temperature: 0.8

统一请求参数实体类

public class UserSendParams {
    private String message;

    public String getMessage() {
        return message;
    }

    public void setMessage(String message) {
        this.message = message;
    }

    public UserSendPojo toPojo() {
        UserSendPojo userSendPojo = new UserSendPojo();
        BeanUtils.copyProperties(this, userSendPojo);
        return userSendPojo;
    }

}

controller

@RestController
@RequestMapping("/ollama")
public class OllamaController {

    @Autowired
    private OllamaService ollamaService;

    @PostMapping(value = "/sendStreamReactor", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
    public Flux<String> sendStreamReactor(@RequestBody UserSendParams params) {
        return ollamaService.sendStreamReactor(params.toPojo());
    }
}

service

public interface OllamaService {
    Flux<String> sendStreamReactor(UserSendPojo userSendPojo);
}

service实现

public class OllamaServiceImpl implements OllamaService {
    private final Logger log = LoggerFactory.getLogger(OllamaServiceImpl.class);

    @Autowired
    private OllamaChatModel ollamaChatModel;

    @Override
    public Flux<String> sendStreamReactor(UserSendPojo userSendPojo) {
        log.info("sendStreamReactor ollama 调用参数 =>{}", userSendPojo.getMessage());
        Prompt prompt = new Prompt(userSendPojo.getMessage());
        long startTime = System.currentTimeMillis();
        try {
            Flux<ChatResponse> fluxResponse = ollamaChatModel.stream(prompt);
            return fluxResponse.map(chatResponse ->
                    chatResponse.getResult().getOutput().getText());
        } catch (Exception e) {
            log.error("sendStreamReactor ollama 流式调用异常 userSendPojo =>{} error =>",
                    userSendPojo, e);
        } finally {
            log.info("sendStreamReactor ollama 调用返回 =>耗时 {}ms",
                    System.currentTimeMillis() - startTime);
        }
        return Flux.empty();
    }

}

简易效果页面

<!DOCTYPE html>
<html lang="zh-CN">

<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <meta http-equiv="X-UA-Compatible" content="ie=edge">
    <title>Document</title>
    <style>
        .chat {
            display: block;
            margin-left: auto;
            margin-right: auto;
            width: 700px;
            border:1px solid #000;
        }
    </style>
</head>

<body>
    <input id="message1" class="message1"></input>
    <button onclick="fetchFunction()">发送文本</button>
</br>
        <label>选择文件上传:</label>
        <input type="file" id="imageUpload" name="imageUpload" accept="image/*">
        <br>
        <button onclick="fetchImageFunction()">发送文本和文件</button>

      <p id="chat" class="chat"></p>
    <script>

    async function fetchFunction(){
    let messageVlue = document.getElementById("message1").value;
    
    if(messageVlue == "" || messageVlue == undefined || messageVlue == null){
        console.log("无输入 =>"+messageVlue);
        return;
    } 
    
    const url = "http://localhost:8080/ollama/sendStreamReactor";
    const textArea = document.getElementById("chat");
    const res = await fetch(url, {
        method: "POST",
        headers: {
            "Content-Type": "application/json"
        },
        body: JSON.stringify({
    "message": messageVlue
})

    });
    console.time("fetch流式耗时");
    const reader = res.body.getReader();
    // 需要将字节数组解码成文字
    const decoder = new TextDecoder();
    textArea.innerText="";
    // 不断循环解析块内容,并且设置进内容区
    while (true) {
        // done代表是否读完,布尔值 value代表当前读到哪一块,是一个字节数组
        const { done, value } = await reader.read();
        // console.log(`当前块的大小: ${value.byteLength}`);
        if (done === true) {
            // 完成全量响应解析,中断解析
            break;
        }
        let decodeText = decoder.decode(value);
        console.log(decodeText)
        decodeText= decodeText.replaceAll("data:","");
        decodeText= decodeText.replaceAll("\n\n","");
        textArea.innerText += decodeText;
    }
    console.timeEnd("fetch流式耗时"); 
}
           
document.getElementById("message1").addEventListener("keydown", function(event) {
  if (event.key === "Enter") {
    fetchFunction();
  }
}); 

async function fetchImageFunction(){
    let messageVlue = document.getElementById("message1").value;
    let imageValue = document.getElementById("imageUpload").value;
    
    if(messageVlue == "" || messageVlue == undefined || messageVlue == null){
        console.log("无输入 =>"+messageVlue);
        return;
    } 
    const formData = new FormData()
    if(imageValue != "" && imageValue != undefined && imageValue != null){
        console.log("有图片 =>"+imageValue);
        let imageFile = document.getElementById("imageUpload").files[0];
        formData.append('imageFile', imageFile);
    } 
    formData.append('message', messageVlue);
    console.log(formData);
    
    const url = "http://localhost:8080/ollama/sendImageAdvisor";
    const textArea = document.getElementById("chat");
    const res = await fetch(url, {
        method: "POST",
        headers: {
            
        },
        body: formData
    });
    console.time("fetch流式耗时");
    const reader = res.body.getReader();
    // 需要将字节数组解码成文字
    const decoder = new TextDecoder();
    textArea.innerText="";
    // 不断循环解析块内容,并且设置进内容区
    while (true) {
        // done代表是否读完,布尔值 value代表当前读到哪一块,是一个字节数组
        const { done, value } = await reader.read();
        // console.log(`当前块的大小: ${value.byteLength}`);
        if (done === true) {
            // 完成全量响应解析,中断解析
            break;
        }
        let decodeText = decoder.decode(value);
        console.log(decodeText)
        decodeText= decodeText.replaceAll("data:","");
        decodeText= decodeText.replaceAll("\n\n","");
        textArea.innerText += decodeText;
    }
    console.timeEnd("fetch流式耗时"); 
}

    </script>
</body>

</html>
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容