深度学习:革新药物心脏毒性预测的新篇章

药物研发是一项充满挑战与风险的领域,尽管科学家们投入大量时间与资源,但仍有高达90%的药物因无法通过临床试验而宣告失败。其中,药物的心脏毒性是一个尤为棘手的问题,不少药物在上市后因被发现对心脏有潜在伤害而被迫召回,这不仅对患者构成威胁,也造成了巨大的资源浪费。为了破解这一难题,科研人员正借助深度学习这一先进的人工智能技术,探索药物安全评估的新路径。

传统上,评估药物的心脏毒性主要依赖于体内和体外模型,但这些方法存在显著的局限性,往往无法准确预测药物对心脏的实际影响。近年来,发表在ACS Sensors上的一项研究为这一领域带来了突破性进展。研究人员利用从诱导多能干细胞(iPSC-CMs)中提取的、更接近人类心脏细胞的实验室培育心脏细胞,通过阻抗测量记录其机械跳动信号,并将这些信号转化为丰富的二维表示,输入到深度学习模型中进行分析。

这项研究中,短时傅立叶变换卷积神经网络(STFT-CNN)和同步压缩变换卷积神经网络(SST-CNN)两种模型展现出了卓越的性能。特别是基于SST-CNN的框架,在药物类型分类上的准确率高达98.55%,在区分心脏毒性和非心脏毒性药物方面的准确率更是达到了惊人的99%。这一成果不仅超越了传统方法,也为药物心脏毒性的早期识别提供了强有力的工具。

与此同时,深度学习在预测其他类型的药物毒性方面也展现出了巨大潜力。例如,在Journal of Chemical Information and Modeling上发表的一项研究成功利用深度神经网络预测了药物对hERG基因的抑制作用,该基因与心脏毒性密切相关。另一项研究则通过深度学习模型预测了药物诱导的肝损伤,这一直是药物安全性撤回的主要原因之一。深度学习模型在这一任务上表现出了86.9%的准确率,且能够识别重要的分子特征,为肝毒性预测提供了新的思路。

这些研究成果共同揭示了深度学习在药物安全评估中的巨大价值。与传统方法相比,深度学习不仅能够更准确地预测药物的心脏毒性和其他毒性效应,还具备更强的可扩展性和适用性。它能够从海量的化学和生物数据中学习复杂的模式,发现那些传统方法难以捕捉到的细微差别,从而为药物研发提供更加全面、准确的毒性评估。

展望未来,随着深度学习技术的不断发展和完善,我们有理由相信,它将在药物研发领域发挥越来越重要的作用。通过提高药物安全评估的准确性和可靠性,深度学习有望显著降低药物研发的失败率,加速新药上市进程,最终造福更多患者。这一技术的革新不仅代表着药物安全评估的重大飞跃,也为人类健康事业的发展开辟了新的道路。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,192评论 6 511
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,858评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,517评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,148评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,162评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,905评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,537评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,439评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,956评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,083评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,218评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,899评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,565评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,093评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,201评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,539评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,215评论 2 358

推荐阅读更多精彩内容