索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。
索引的常见模型
索引的出现是为了提高查询效率,但是实现索引的方式却有很多种,所以这里也就引入了索引模型的概念。可以用于提高读写效率的数据结构很多,这里我先给你介绍三种常见、也比较简单的数据结构,它们分别是哈希表、有序数组和搜索树
。
1.索引的作用:提高数据查询效率
2.常见索引模型:哈希表、有序数组、搜索树
3.哈希表:键 - 值(key - value)。
4.哈希思路:把值放在数组里,用一个哈希函数把key换算成一个确定的位置,然后把value放在数组的这个位置。
5.哈希冲突的处理办法:链表
6.哈希表适用场景:只有等值查询的场景
7.有序数组:按顺序存储。查询用二分法就可以快速查询,时间复杂度是:O(log(N))
8.有序数组查询效率高,更新效率低
9.有序数组的适用场景:静态存储引擎。
10.二叉搜索树:每个节点的左儿子小于父节点,父节点又小于右儿子
11.二叉搜索树:查询时间复杂度O(log(N)),更新时间复杂度O(log(N)
12.数据库存储大多不适用二叉树,因为树高过高,会适用N叉树
13.InnoDB中的索引模型:B+Tree
14.索引类型:主键索引、非主键索引
主键索引的叶子节点存的是整行的数据(聚簇索引)
非主键索引的叶子节点内容是主键的值(二级索引)
15.主键索引和普通索引的区别:主键索引只要搜索ID这个B+Tree即可拿到数据。普通索引先搜索索引拿到主键值,再到主键索引树搜索一次(回表)
16.一个数据页满了,按照B+Tree算法,新增加一个数据页,叫做页分裂,会导致性能下降。空间利用率降低大概50%。当相邻的两个数据页利用率很低的时候会做数据页合并,合并的过程是分裂过程的逆过程。
17.从性能和存储空间方面考量,自增主键往往是更合理的选择。
如果删除/新建主键索引,会同时去修改普通索引对应的主键索引,性能消耗比较大
删除重建普通索引貌似影响不大,不过要注意在业务低谷期操作,避免影响业务。