高并发系统设计 - 限流

系统在设计之初就会有一个预估容量,长时间超过系统能承受的TPS/QPS阈值,系统可能会被压垮,最终导致整个服务不够用。为了避免这种情况,我们就需要对接口请求进行限流。


限流的目的是通过对并发访问请求进行限速或者一个时间窗口内的的请求数量进行限速来保护系统,一旦达到限制速率则可以拒绝服务、排队或等待。


常见的限流模式有控制并发和控制速率,一个是限制并发的数量,一个是限制并发访问的速率,另外还可以限制单位时间窗口内的请求数量。

控制并发数量

属于一种较常见的限流手段,在实际应用中可以通过信号量机制(如Java中的Semaphore)来实现。
举个例子,我们对外提供一个服务接口,允许最大并发数为10,代码实现如下:

public class DubboService {

    private final Semaphore permit = new Semaphore(10, true);

    public void process(){

        try{
            permit.acquire();
            //业务逻辑处理

        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            permit.release();
        }
    }
}

在代码中,虽然有30个线程在执行,但是只允许10个并发的执行。Semaphore的构造方法Semaphore(int permits) 接受一个整型的数字,表示可用的许可证数量。Semaphore(10)表示允许10个线程获取许可证,也就是最大并发数是10。Semaphore的用法也很简单,首先线程使用Semaphore的acquire()获取一个许可证,使用完之后调用release()归还许可证,还可以用tryAcquire()方法尝试获取许可证。

控制访问速率

在我们的工程实践中,常见的是使用令牌桶算法来实现这种模式,其他如漏桶算法也可以实现控制速率,但在我们的工程实践中使用不多,这里不做介绍,读者请自行了解。

Wikipedia上,令牌桶算法是这么描述的:

  1. 每过1/r秒桶中增加一个令牌。
  2. 桶中最多存放b个令牌,如果桶满了,新放入的令牌会被丢弃。
  3. 当一个n字节的数据包到达时,消耗n个令牌,然后发送该数据包。
  4. 如果桶中可用令牌小于n,则该数据包将被缓存或丢弃。

令牌桶控制的是一个时间窗口内通过的数据量,在API层面我们常说的QPS、TPS,正好是一个时间窗口内的请求量或者事务量,只不过时间窗口限定在1s罢了。以一个恒定的速度往桶里放入令牌,而如果请求需要被处理,则需要先从桶里获取一个令牌,当桶里没有令牌可取时,则拒绝服务。令牌桶的另外一个好处是可以方便的改变速度,一旦需要提高速率,则按需提高放入桶中的令牌的速率。

在我们的工程实践中,通常使用Guava中的Ratelimiter来实现控制速率,如我们不希望每秒的任务提交超过2个:

//速率是每秒两个许可
final RateLimiter rateLimiter = RateLimiter.create(2.0);

void submitTasks(List tasks, Executor executor) {
    for (Runnable task : tasks) {
        rateLimiter.acquire(); // 也许需要等待
        executor.execute(task);
    }
}

控制单位时间窗口内请求数

某些场景下,我们想限制某个接口或服务 每秒/每分钟/每天 的请求次数或调用次数。例如限制服务每秒的调用次数为50,实现如下:

import com.google.common.cache.CacheBuilder;
import com.google.common.cache.CacheLoader;
import com.google.common.cache.LoadingCache;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;

    private LoadingCache<Long, AtomicLong> counter =
            CacheBuilder.newBuilder()
                    .expireAfterWrite(2, TimeUnit.SECONDS)
                    .build(new CacheLoader<Long, AtomicLong>() {
                        @Override
                        public AtomicLong load(Long seconds) throws Exception {
                            return new AtomicLong(0);
                        }
                    });
    
    public static long permit = 50;
    
    public ResponseEntity getData() throws ExecutionException {
        
        //得到当前秒
        long currentSeconds = System.currentTimeMillis() / 1000;
        if(counter.get(currentSeconds).incrementAndGet() > permit) {
            return ResponseEntity.builder().code(404).msg("访问速率过快").build();
        }
        //业务处理
        
    }

分布式限流

很多时候我需要有一个全局的限速,例如用户注册时,让用户输入手机验证码,为了防止短信接口不被恶意频繁调用,一般会限制用户每分钟获取验证码频率,例如一分钟不能超过5次。

此时,我们可以通过Redis的来实现,伪代码如下:

phoneNum = "186xxxxxx";
key = "verifyCode:limit:"+phoneNum 
// SET key value EX 60 NX
isExists = redis.set(key, 1, "EX 60", "NX");
if( isExists !=null || redis.incr(key) <=5) {
    //通过
} else {
    //限速
}

上述,就是通过Redis实现了限速功能,例如一些网站限制一个IP地址不能在一秒钟内访问超过n次也可以采用类似的思路来实现。

参考资料

服务化体系之-限流

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容

  • 聊聊高并发系统限流特技-1来自开涛的博客 在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流。缓存的目的是...
    meng_philip123阅读 6,627评论 1 20
  • 摘要:在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流。而有些场景并不能用缓存和降级来解决,因此需有一种...
    落羽成霜丶阅读 2,150评论 0 18
  • 最近一直都在研究压力测试客户端的问题,如果突破客户端压力测试线程,端口等问题,如果服务器端处理网络请求处理不过来,...
    望月成三人阅读 8,639评论 1 25
  • 摘要:上一篇《聊聊高并发系统限流特技-1》讲了限流算法、应用级限流、分布式限流;本篇将介绍接入层限流实现。 接入层...
    落羽成霜丶阅读 927评论 0 5
  • 趁着国庆7天小长假,带上学生证和小伙伴们去了成都玩。 因为花蕊夫人而得名的芙蓉城如今是一个悠闲之都,成都节奏很慢,...
    马踏清秋阅读 1,059评论 4 5